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A B S T R A C T   

Alzheimer’s disease (AD) is a gradually progressive neurodegenerative disease affecting cognition functions. 
Predicting the cognitive scores from neuroimage measures and identifying relevant imaging biomarkers are 
important research topics in the study of AD. Despite machine learning algorithms having many successful ap-
plications, the prediction model suffers from the so-called curse of dimensionality. Multi-task feature learning 
(MTFL) has helped tackle this problem incorporating the correlations among multiple clinical cognitive scores. 
However, MTFL neglects the inherent correlation among brain imaging measures. In order to better predict the 
cognitive scores and identify stable biomarkers, we first propose a generalized multi-task formulation framework 
that incorporates the task and feature correlation structures simultaneously. Second, we present a novel feature- 
aware sparsity-inducing norm (FAS-norm) penalty to incorporate a useful correlation between brain regions by 
exploiting correlations among features. Three multi-task learning models that incorporate the FAS-norm penalty 
are proposed following our framework. Finally, the algorithm based on the alternating direction method of 
multipliers (ADMM) is developed to optimize the non-smooth problems. We comprehensively evaluate the 
proposed models on the cross-sectional and longitudinal Alzheimer’s disease neuroimaging initiative datasets. 
The inputs are the thickness measures and the volume measures of the cortical regions of interest. Compared with 
MTFL, our methods achieve an average decrease of 4.28% in overall error in the cross-sectional analysis and an 
average decrease of 7.97% in the Alzheimer’s Disease Assessment Scale cognitive total score longitudinal 
analysis. Moreover, our methods identify sensitive and stable biomarkers to physicians, such as the hippocampus, 
lateral ventricle, and corpus callosum.   

1. Introduction 

Alzheimer’s disease (AD) is one of the most common progressive 
neurodegenerative diseases and the number of AD patients has been 
about 50 million according to World Health Organization (WHO) report 
(2019) [1]. Note that, China bears a heavy burden of AD costs, which 
greatly changes the estimates of AD costs worldwide [2]. Despite the fact 
that there is no cure for AD, early diagnosis of AD allows effective 
measures to prevent the disease from worsening [3]. 

Early diagnosis of AD usually starts with multiple cognitive tests [4]. 
The most commonly used cognitive tests include the Alzheimer’s 

Disease Assessment Scale cognitive total score (ADAS) [5], the 
Mini-Mental State Exam score (MMSE) [6], and the Rey Auditory Verbal 
Learning Test (RAVLT) [7]. But researchers have found that the cogni-
tive test results could be influenced by environmental factors, such as 
education, sociocultural biases of testing content, and the testing pro-
cess. For example, African Americans scored significantly lower than 
White Non-Hispanics on the MMSE in an analysis that controlled for 
traditional demographics, including age, sex, and years of formal edu-
cation, which suggests that differences in quality of education impact 
cognitive performance [8]. Fortunately, previous works suggest that 
brain atrophy may be present for years before the appearance of AD 
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symptoms [9,10]. Therefore the neuroimaging technology has been 
widely employed in the early diagnosis of AD because it can provide 
more sensitive and stable biomarkers [11]. In particular, magnetic 
resonance imaging (MRI) is one of the most informative techniques, 
which has been the first choice for the diagnosis of suspected AD [12]. 

This paper focuses on the problem of diagnosing AD by using MRI. 
The related works generally include two aspects: (1) the identification of 
relevant biomarkers and (2) predicting cognitive scores from MRI. For 
the first aspect, the identification of sensitive and stable biomarkers 
could facilitate disease diagnosis and prognosis [13]. Several studies 
apply statistical learning methods to selecting a set of neuroanatomic 
measures for AD diagnosis, such as principal component analysis and 
factor analysis [14–16]. For the second aspect, predicting cognitive 
scores can benefit screening and tracking the disease progression [17]. 
Some researchers performed linear regression models to predict clinical 
cognitive scores [17–19]. All these methods have a common charac-
teristic: the biomarker identification and the clinical cognitive score 
prediction are separately performed, which will limit their prediction 
abilities. 

Several studies have developed models that jointly realize the 
cognitive score prediction and the biomarker discovery. Sparse learning 
is one of the most popular techniques that are capable of simultaneously 
building predictive models from training data and performing 
biomarker identification via embedded feature selection [20]. It is well 
known that the ℓ1-norm penalty leads to a sparse model, i.e., it can 
shrink many entries of the model to be exactly zero to achieve feature 
selection [21]. Sparse learning methods based on the ℓ1-norm penalty 
have attracted a great number of research efforts due to their 
sparsity-inducing property, convenient convexity, and strong theoretical 
guarantees [20,22]. F. Bunea et al. discussed the most popular methods 
of predictor selection in regression models and presented that concur-
rently learning of cognitive score prediction and biomarker identifica-
tion achieves a better performance than the individual component [23]. 
Despite the theoretical and empirical success, these models only predict 
clinical scores at a single time point or a single cognitive test, and their 
performances are far from satisfactory to be clinically useful for AD 
prognosis [24]. 

Multi-task learning (MTL) formulations are proposed to address the 
aforementioned challenges. In MTL, multiple tasks are learned simul-
taneously to improve the performance by utilizing task relatedness [25]. 

One appealing feature of the ℓ2,1-norm penalty is that it encourages 
multiple tasks to share similar sparsity patterns [26], and it has been 
commonly used in regression models and performs the joint feature 
selection on the multiple tasks [24,25,27,28]. Although multi-task 
learning methods that penalize the ℓ2,1-norm have achieved great suc-
cess in many applications, they ignore the intrinsic useful correlation 
information among the features in a group structure. In AD research 
studies, the features that come from the brain regions can be divided into 
a set of non-overlapping groups [29]. Fig. 1 illustrates the intrinsic 
feature group structure. It can be observed that the brain is segmented 
into the regions of interest (ROIs), i.e., brain regions, according to the 
brain atlas (such as the Desikan-Killany), and the thickness measures 
and the volume measures of ROIs are used as the input features to 
predict the cognitive scores. Therefore, the thickness average (TA), 
thickness standard deviation (TS), surface area (SA), and cortical vol-
ume (CV) from the same cortical ROI could be seen as a group. Following 
this line, several studies have constructed multi-task learning models 
that group the relevant features together [30–32]. However, the previ-
ous studies only consider the intrinsic feature group structure, which is a 
restrictive assumption. The correlation between ROIs (feature groups) 
[33] has been ignored. 

The ROIs correlations are denoted as the correlations between fea-
tures in different brain regions in this work, and the Pearson correlation 
coefficient (PCC) is utilized to calculate the correlation coefficient for 
each pair of features. Then the correlation coefficients between ROIs are 
the sum of their feature correlation coefficients. Note that the correla-
tion coefficients over 0.7 have been reserved to guarantee the sparsity. 
For example, X. Chen et al. only used the label correlation coefficients 
with cutoff 0.4 and the feature correlation coefficients with cutoff 0.6 
[34]. Fig. 2 illustrates the correlations between ROIs by a chord dia-
gram. It can be intuitively observed that there exist correlations between 
ROIs, which is called cross-regional feature correlation in this paper. 
Therefore, we consider the intrinsic group structure of the features as the 
explicit feature correlation and consider the cross-regional feature cor-
relation as the implicit feature correlation. Inspired by the above anal-
ysis, we propose a novel regularization that incorporates the implicit 
feature correlation and construct multi-task learning models to predict 
clinical cognitive scores and identify biomarkers. The regularization 
penalty and multi-task learning models are presented in Section 4. 

The main contributions of our study are summarized as follows: 

Fig. 1. The procedure of predicting cognitive scores using the features extracted from the brain MRI data. The brain is segmented into the regions of interest (ROIs) 
according to the brain atlas (such as the Desikan-Killany). Some ROIs (cortical regions) include four features: thickness average (TA), thickness standard deviation 
(TS), surface area (SA), and cortical volume (CV). Some ROIs (subcortical regions) include one feature: subcortical volume (SV). 
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(1) Formulation of a multi-task learning framework for disease 
prediction. According to whether the regularization items 
incorporate the task or feature structure information, this paper 
summarizes the common regularization items proposed and 
applied in AD research studies. Then, we propose a generalized 
multi-task formulation framework simultaneously incorporating 
task correlation structure and feature correlation structure to 
improve regression performance and help identify important 
biomarkers.  

(2) Designing a new regularization. We propose a feature-aware 
sparsity-inducing norm (FAS-norm) penalty, which incorporates 
a useful correlation between brain regions by exploiting corre-
lations among features. Then, the FAS-norm penalty is extended 
to three multi-task learning models.  

(3) Development of efficient optimization algorithm. We develop 
an optimization algorithm based on the alternating direction 
method of multipliers (ADMM) to solve the non-smooth convex 
problem caused by our proposed regularization penalty. The 
optimization method could be extended to other problems 
incorporating the FAS-norm penalty.  

(4) Comprehensive experiments to validate the effectiveness of 
the proposed models. We first carry out simulations to assess 
the effectiveness of our methods in the scenario where tasks have 
a different number of features. Then, we evaluate the proposed 
methods using both cross-sectional and longitudinal Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) datasets. For compari-
son, we implement a broad range of other algorithms. The 
experimental results on the ADNI datasets demonstrate that the 
proposed models consistently outperform competing methods 

and could identify stable biomarkers. We also conduct experi-
ments on the dataset from the UCI data archive to evaluate the 
effectiveness of the proposed generalized multi-task formulation 
framework applied to the other conventional structural data. 

The rest of this paper is organized as follows. Section 2 reviews the 
related work for jointly predicting the cognitive scores and selecting 
biomarkers based on regularized multi-task learning. Section 3 presents 
the preliminaries including the summaries of the regularization with 
different prior knowledge. Section 4 introduces our proposed general-
ized multi-task learning formulation framework, the FAS-norm penalty, 
and its three extended models, as well as the optimization algorithm 
based on the ADMM. Section 5 presents the experimental results and 
analysis on both synthetic and real datasets. Section 6 discusses the 
effectiveness of the proposed methods on another multi-view dataset, 
clinic score prediction, and biomarker identification. Section 7 con-
cludes the paper. 

2. Related work 

Regarding the prediction of cognitive scores and identification of 
relevant biomarkers for AD study, a number of techniques have been 
presented using regularized multi-task learning approaches to realize 
them jointly, and this is also the focus of this paper. Thus, we only re-
view the existing regularized multi-task learning methods for AD study. 

The idea of regularized multi-task learning is to utilize the intrinsic 
relationships among multiple related tasks in order to improve the 
prediction performance, i.e., properly introducing the prior tasks cor-
relation structure knowledge into regularization could help improve the 
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prediction accuracy. One of the key issues in regularized multi-task 
learning is to build learning models to capture such prior tasks corre-
lation structure knowledge. There are two types of analysis that have 
been commonly studied in the literature about AD study to incorporate 
tasks correlation structure: cross-sectional analysis and longitudinal 
analysis. In the cross-sectional analysis, the prediction of different types 
of cognitive scores can be modeled as an MTL formulation, and the ℓ2,1- 
norm is the most commonly used regularization to incorporate the prior 
tasks correlation structure knowledge [27,28,35]. Specifically, H. Wang 
et al. employed an ℓ1-norm penalty to impose sparsity among all ele-
ments and proposed the use of a combined ℓ2,1-norm and ℓ1-norm 
penalties to select features [28]. D. Zhang et al. proposed a multi-task 
learning with ℓ2,1-norm to select a common subset of relevant features 
for multiple variables from each modality [27]. In the longitudinal 
analysis, researches formulate the prediction of clinical scores at a 
sequence of time points as a multi-task problem, where each task con-
cerns the prediction of a clinical score at one time point. A great amount 
of work is devoted to capture the intrinsic relationship among tasks at 
different time points [25,36–38]. For example, J. Zhou et al. assumed 
that the multiple regression models from different time points satisfy the 
smoothness property, and proposed a temporal smoothness term [24, 
25]. B. Jie et al. incorporated two smoothness regularization terms into 
the objective function, fused smoothness term that penalties the differ-
ences between two successive weight vectors and output smoothness 
term that penalties the differences between outputs of two successive 
models [37]. H. Wang et al. imposed the low rank regularization 
denoted as the trace norm to exploit task correlations among the 
learning tasks at different time points [39]. M. Wang et al. utilized a 
relationship induced regularization to automatically capture the 
intrinsic relationship among tasks at different time points for estimating 
clinical scores based on longitudinal imaging data [40]. 

Although the aforementioned studies have performed outstanding 
results, they only consider the task correlation structure, ignoring the 
interrelated structures within neuroimaging measures, and thus may 
have limited power to generate optimal solutions [30]. In order to 
address this issue, a number of researches have been presented to take 
into account the feature group correlation structure [31,32,41,42]. For 
example, J. Wan exploited not only inter-vector correlation among 
regression coefficient vectors but also an intra-block correlation in each 
regression coefficient vector [41]. J. Yan et al. proposed a group-level ℓ2, 

1-norm strategy to group relevant features together in an anatomically 
meaningful manner and used this prior knowledge to guide the learning 
process, and the proposed model is called Group-sparse Multitask 
Regression and Feature Selection (G-SMuRFS) [30]. G-SMuRFS allows 
learning a common subset of feature groups across all the tasks simul-
taneously. This assumption is too restrictive since different tasks may 
prefer different feature groups. In order to solve this limitation, X. Liu 
et al. proposed a multi-task sparse group lasso (MT-SGL) method which 
encourages individual feature group selection with sparsity-inducing 
norm [32]. Despite the above achievements, studies have demon-
strated that AD is closely related to the structure change of the con-
nectivity among different brain regions, and the connectivity patterns 
will provide useful prior knowledge to guide the learning process [43]. 

In order to solve the issues above, we propose a generalized multi- 
task formulation framework that simultaneously incorporates the task 
and feature correlation structures. We also present a novel regulariza-
tion penalty to incorporate a useful correlation between brain regions by 
exploiting correlations among the cross-regional features. 

3. Preliminaries 

A lowercase character denotes scalar (e.g., a). An uppercase char-
acter denotes matrix (e.g., A). A bold lowercase character denotes vector 
(e.g., a). The i-th entry of a is denoted as ai, the i-th row of A as ai or Ai,⋅, 
the j-th column of A as aj or A⋅,j, the transpose of A as AT, the trace of A as 
tr(A) if A is a square matrix, and the inverse of A as A− 1. 

3.1. Problem setup 

In machine learning methods, the regression relationship between y 
and X is usually denoted as y = Xw + ξ. X = [x1,…, xn]

T
∈ Rn×p denotes 

the training data where n and p are the number of the training instances 
and the dimensionality respectively. y = [y1,…, yn]

T
∈ Rn×1 denotes the 

labels and w ∈ Rp×1 denotes the parameter vector of the model. ξ = y − ŷ 
denotes the prediction error. The regression problem can be constructed 
as estimating the parameters based on a suitable regularized loss 
function: 

min
w

ℒ(y,X,w) + λR(w) , (1)  

where the loss function can be ℒ(y, X, w) = 1
2‖y − Xw‖2

2. The regulari-
zation term R(⋅) penalizes the complexity of a learning model and alle-
viates overfitting by adding prior structural knowledge to it. λ > 0 is a 
regularization parameter controlling the tradeoff between the loss and 
the penalty. 

MTL setting with t tasks is considered in this paper. The input of the j-th 
task can be denoted as Xj = [x1,…, xnj ]

T
∈ Rnj×pj , where j = 1, 2, …, t. 

The output of the j-th task can be denoted as yj ∈ Rnj×1. The model of the 
j-th task is denoted as wj ∈ Rpj×1. Then, the regularized least square loss 
function for the MTL can be formulated as: 

min
W

∑t

j=1

1
2
‖yj − Xjwj‖

2
2 + λR(W) , (2)  

where the j-th column of W is wj. Note that the related studies usually 
assume that all tasks have the same number of features, i.e., p1 = p2 = … 
= pt = p. Therefore W = [w1,…,wt ] ∈ Rp×t. 

3.2. The cross-sectional and longitudinal analysis 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a longi-
tudinal multicenter study designed to develop clinical, imaging, genetic, 
and biochemical biomarkers for the early detection and tracking of AD. 
ADNI database is collected through regular hospital visits of patients 
after their first screening (baseline). Two families of multi-task learning 
problems are studied on the ADNI datasets in this work: the cross- 
sectional analysis and the longitudinal analysis. It is assumed that the 
input of each task is identical in the remainder of this section, which 
means Xj = X ∈ Rn×p, j = 1, 2, …, t. Consequently, the least square loss 
function can be denoted as ℒ(Y,X,W) = 1

2‖Y − XW‖
2
F . 

The cross-sectional analysis is shown in Fig. 3 (a). X = [x1,…, xn]
T
∈

Rn×p denotes the thickness measures and the volume measures of ROIs at 
patients’ first screening. Y = [y1,…, yn]

T
∈ Rn×t denotes the scores of 

patients corresponding to different cognitive tests. The wj in W = [w1,… 
,wt ] ∈ Rp×t denotes the model parameter vector of the j-th cognitive 
score. In the cross-sectional analysis, the models are constructed for 
multiple cognitive scores at a time point. It is assumed that the cognitive 
scores are correlated with each other. 

The longitudinal analysis is shown in Fig. 3 (b), where wj denotes the 
model parameter vector of one cognitive score at the j-th time point. The 
first screening of the patient is called the baseline, and the time point for 
the follow-up visits is denoted by the duration starting from the baseline 
[25]. Therefore, time points are denoted as baseline (time = 0), six 
months later (time = 6), 12 months later (time = 12), 24 months later 
(time = 24), and 36 months later (time = 36). X = [x1,…, xn]

T
∈ Rn×p is 

still the thickness measures and the volume measures of ROIs at the 
baseline. Y = [y1,…, yn]

T
∈ Rn×t is the scores of patients corresponding 

to a cognitive test at different time points. In the longitudinal analysis, 
we predict future scores of the specific cognitive test using baseline MRI 
data. Note that the longitudinal models are applied independently on 
each cognitive score, and we do not assume that the cognitive scores are 
correlated. 
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Fig. 3. (a) The cross-sectional analysis: to predict multiple cognitive scores at the baseline. (b) The longitudinal analysis: to predict scores of the specific cognitive 
test at multiple time points. 

Fig. 4. An illustration of the ℓ2,1-norm penalty and the G1-norm penalty. The non-zero weights are colored. In subfigure (a), the weights framed by each dashed line 
are shrunk together. In subfigure (b), the weights in each gray background are shrunk together. 
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3.3. Regularization with different prior structural knowledge 

In this section, we summary the regularization terms that are 
commonly applied in AD research studies from the perspective that the 
regularization could incorporate different prior structural knowledge. 
The ℓ2,1-norm penalty is one of the most common regularization terms 
for MTL, which encourages multiple tasks to share similar sparsity 
patterns [26]. It is formulated as 

‖W‖2,1 =
∑p

i=1
‖wi‖2 , (3)  

where wi is the weights of one feature over all tasks, and the illustration 
of the ℓ2,1-norm penalty is in Fig. 4 (a). 

Although the ℓ2,1-norm penalty has performed outstanding results, it 
does not consider the feature correlation, which is inconsistent with the 
reality [33]. Previous studies assume the p covariates to be divided into g 
disjoint groups Gi, i = 1, …, g, with each group having vi covariates 
respectively [46]. In the context of AD research studies, each group 
corresponds to an ROI in the brain, and the covariates in each group 
correspond to specific features of that region. Therefore, the number of 
features in each group, vi, ranges from 1 to 4, and the number of groups g 
can be in the hundreds. Then the G1-norm penalty is introduced ac-
cording to the relationship between the brain regions (ROIs) to 
encourage a task-specific subset of ROIs [42]. The formulation of the 
G1-norm penalty is given as 

‖W‖G1
=

∑g

i=1

∑t

j=1
ωi‖WGi ,j‖2 , (4)  

which is shown in Fig. 4 (b). ωi denotes the weight of the i-th feature 
group, where ωi =

̅̅̅̅vi
√ . WGi ,j denotes the weights of features that consist 

in the i-th feature group for the j-th task. Brand et al. proposed a method 
applying the group-level ℓ1-norm penalty (the G1-norm [47]) to capture 
the relationships that are intrinsic in the input modalities [42]. 

Following the line that whether the regularization items incorporate 
the task or feature structure knowledge, this paper divides them into 
four categories: no structural knowledge, task structure, feature struc-
ture, and both task and feature structure. Specifically, the temporal 
penalty and the fused lasso penalty are employed to incorporate the 
temporal smoothness within tasks for the longitudinal analysis [25]. The 
exclusive lasso penalty assumes a competitive nature among the features 
shared by all the tasks. That is to say, if a feature was assigned a very 
large weight in one task, the weights of this feature in other tasks were 
expected to be small or even zero [40]. In the relationship induced term, 
Ω denotes the task covariance matrix that will benefit learning the 
models by inducing the correct relationship among tasks [40]. The 
robust regularization term is aimed at identifying irrelevant (outlier) 
tasks when learning from multiple tasks [45]. Note that, the G2,1-norm 
penalty is different from the G1-norm penalty because the G2,1-norm 
penalty introduces the group feature structure across all tasks whereas 
the G1-norm penalty introduces that for each task. That is, the G2,1-norm 
penalty aims to select task-shared features but the G1-norm penalty aims 
to select task-specific features [30,42]. The details of the regularization 
terms that are often applied in the AD research studies are listed in 
Table 1. 

4. Methodology 

4.1. The generalized multi-task formulation 

Regularization is a technique to prevent the model from overfitting 
by adding prior structural knowledge to it, and incorporating proper 
prior knowledge into it will benefit learning the models. Although the 
regularized multi-task learning methods have performed outstanding 
results, multiple prediction models only consider the prior task corre-
lation structure knowledge, ignoring the interrelated structures within 
features, and thus may have limited power to generate optimal solu-

tions. To address this limitation, we design a general multi-task learning 
formulation. Mathematically, we minimize the following joint objective: 

min
W

ℒ(Y,X,W) + λtRt(W) + λf Rf (W) , (5)  

where Rt(⋅) and Rf(⋅) incorporate the task correlation structure knowl-
edge and the feature correlation structure knowledge respectively. We 
assume that adding the feature correlation structure information can 
help to improve regression performance and identify important bio-
markers. The least square loss function is studied in this work. The j-th 
column of W is wj. X and Y denote input and output data respectively, 
which are described in Section 3.2. 

4.2. Feature-aware sparsity-inducing regularization 

The G1-norm penalty only incorporates the intrinsic group structure 
of the features (the explicit feature correlation), and the cross-regional 
feature correlation (the implicit feature correlation) is neglected. This 
may cause bias in biomarker identification. According to the analysis of 
the cross-regional feature correlation in Fig. 2, it can be seen that the 
correlation among different regions is existent. We use the correlation 
between features in different regions to denote the region correlations. It 
is reasonable to assume that the difference of the importance between 
two strong correlated features is small. 

Firstly, we construct a feature correlation matrix C ∈ Rp×p, and the 
off-diagonal entries donate feature correlation coefficients. cm,l denotes 
the correlation coefficient of the m-th feature and the l-th feature, which 
is calculated as: 

cm,l =
cov

(
X⋅,m,X⋅,l

)

σX⋅,m σX⋅,l

=
E
[(

X⋅,m − μX⋅,m

)(
X⋅,l − μX⋅,l

)]

σX⋅,m σX⋅,l

, (6)  

where m, l = 1, …, p, cm,l ∈ [ − 1, 1]. The X⋅,m denotes the m-th feature 
values of all samples. cov is the covariance, and σX⋅,m is the standard 
deviation of X⋅,m. E is the expectation. μX⋅,m 

is the mean of X⋅,m. cm,l >

0 denotes positive correlation between features and cm,l < 0 denotes 
negative correlation between features. The bigger |cm,l| denotes the 
stronger correlation between feature m and l. 

Next, the distribution of the feature correlation coefficient has been 
shown in Fig. 5. It can be observed that the strength of the feature 
correlation is unstable. To build a more stable correlation matrix, a 
threshold technique is applied to connect only highly correlated fea-
tures. Two features are considered highly correlated if the absolute value 
of their correlation coefficient is above a given threshold τ. Therefore, 
the useful connectivity among different brain regions can be identified 

Table 1 
Regularization with different prior structural knowledge.  

Prior structural 
knowledge 

Name Formulation Cite 

No structural 
knowledge 

ℓ2-norm ‖W‖
2
F =

∑p
i=1

∑t
j=1W2

i,j  
[24] 

ℓ1-norm ‖W‖1 =
∑p

i=1
∑t

j=1
⃒
⃒Wi,j

⃒
⃒ [44] 

Task structure ℓ2,1-norm ‖W‖2,1 =
∑p

i=1‖wi‖2  [44] 

Temporal penalty ‖WH‖
2
F =

∑t− 1
j=1‖wj −

wj+1‖
2
2  

[25] 

Fused lasso ‖WH‖1 =
∑t− 1

j=1‖wj −

wj+1‖1  

[25] 

Exclusive lasso ∑p
i=1‖wi‖

2
1  

[40] 

Relationship 
induced term 

tr(WΩ− 1WT) s.t. Ω ⩾ 0, tr 
(Ω) = 1 

[40] 

Robust ‖WT‖2,1 =
∑t

j=1‖wj‖2  [45] 

Feature structure G1-norm ‖W‖G1
=

∑g
i=1

∑t
j=1ωi‖

WGi ,j‖2  

[42] 

Task and feature 
structure 

G2,1-norm ‖W‖G2,1
=

∑g
i=1ωi‖WGi ,⋅‖F  [30]  
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from the estimated feature correlation matrix. 
The cross-regional feature correlation can be developed as a type of 

graph regularization. It can be constructed as an undirected graph G =

(V,E), where the vertexes in V denote features and the undirected edges 
in E connect feature pairs whose correlation coefficients are reserved. e 
(m, l) ∈ E corresponds to an edge between the m-th feature and the l-th 
feature. Finally, the matrix C is normalized into S: 

sm,l =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
cm,l

k
(m, l) ∈ E,m ∕= l

∑p

m=1,m∕=l

⃒
⃒rm,l

⃒
⃒

k
(m, l) ∈ E,m = l

0 otherwise ,

(7)  

where k = |E| is the number of edges in E. 
Inspired by the above analysis, to capture the implicit feature cor-

relation across different ROIs, an implicit feature correlation regulari-
zation, the feature-aware sparsity-inducing norm (FAS-norm) penalty, is 
designed. The FAS-norm penalty penalizes large deviations between 
features of high correlation, resulting in the following formulation: 

‖SW‖1 =
∑

e(m,l)∈E

⃒
⃒sm,l

⃒
⃒‖wm − sign

(
sm,l

)
wl‖1 , (8)  

where wi is the i-th row of the matrix W, and the weight |sm,l| is 
considered (See Fig. 6). The FAS-norm penalty encourages the corre-
lated features to take similar values by shrinking the difference between 
them toward zero. 

4.3. Feature-aware sparse multi-task feature learning 

Bias can arise in the biomarker identification of the conventional 
MTFL model because it only incorporates the intrinsic correlation 
among tasks without considering the important correlation among fea-
tures. It is thus desired to develop a model which incorporates task and 
feature correlations simultaneously. To this end, a feature-aware sparse 
multi-task feature learning model (FAS-MTFL) is proposed, which in-
corporates the FAS-norm penalty into the conventional MTFL model and 
helps to identify more stable biomarkers. In particular, the following 
multi-task learning model is considered: 

min
W

1
2
‖Y − XW‖

2
F + λ1‖W‖2,1 + λ2‖SW‖1 . (9) 

The objective contains two regularization penalties: (1) the ℓ2,1- 
norm penalty allows joint feature selection for all tasks, and (2) the FAS- 
norm penalty is enforced on the features, which incorporates the im-
plicit feature correlation. 

4.4. Dual feature correlation guided multi-task feature learning for the 
cross-sectional analysis 

In the FAS-MTFL model above, the implicit feature correlation is 
incorporated by the FAS-norm penalty but it has not considered the 
explicit feature correlation. Recall that the explicit feature correlation 
and the implicit feature correlation exist simultaneously in ROIs. It is 
reasonable to incorporate complete feature structure information, thus 
the more accurate and stable biomarkers for AD can be identified. To 
this end, a dual feature correlation guided multi-task feature learning 
model (dMTLc) for the cross-sectional analysis is developed, which in-
corporates the G1-norm penalty to model the explicit feature correlation: 

min
W

1
2
‖Y − XW‖

2
F + λ1‖W‖2,1 + λ2‖SW‖1 + λ3‖W‖G1

. (10) 

The G1-norm penalty assumes that the features coming from a brain 
region can be divided into a group and selects task-specific feature 
groups. 

4.5. Dual feature correlation guided multi-task fused learning for the 
longitudinal analysis 

The models above incorporate the relatedness among different tasks 
by utilizing the ℓ2,1-norm penalty. The assumption for it is that these 
tasks are equally related to each other, which is improper for the case in 
the longitudinal analysis. In the course of disease progression, it is 
reasonable to assume that the difference of the cognitive scores between 
two successive time points is relatively small [25]. Therefore, we 
incorporate the fused lasso penalty to formulate a dual feature correla-
tion guided multi-task fused learning model (dMTLl) for longitudinal 
analysis. The fused lasso penalty induces the temporal smoothness 
within tasks, and the dMTLl model is defined as: 

min
W

1
2
‖Y − XW‖

2
F + λ1‖WH‖

2
1 + λ2‖SW‖1 + λ3‖W‖G1

, (11)  

where ‖WH‖
2
1 is the fused lasso penalty, and H ∈ Rt×(t− 1), Hi,j = 1 if i = j, 

Hi,j = − 1 if i = j + 1, i, j = 1, 2, …, t. 

4.6. Optimization 

The formulation is challenging to optimize due to the use of non- 
smooth penalties. The ADMM algorithm simplifies the process of the 
non-smooth penalty by introducing a new variable, then uses the cor-
responding operation to solve the minimization problem. Motivated by 
the success of applying the ADMM algorithm to parallelizing distributed 
convex problems, we propose an optimization method based on that to 
solve Eq. (9). 

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40
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Fig. 5. The distribution of the feature correlation coefficient. (The horizontal 
axis is the absolute value of the correlation coefficient. The vertical axis is the 
amount of the feature pairs corresponding to the correlation coefficient.) 

Fig. 6. An illustration of the feature-aware sparsity-inducing norm (FAS-norm) 
penalty. There are p features and t tasks. The non-zero weights are colored. 
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By introducing slack variables Q = W and P = SW, Eq. (9) can be 
rewritten in ADMM form as Eq. (12). 

min
W,Q,P

1
2
‖Y − XW‖

2
F + λ1‖Q‖2,1 + λ2‖P‖1

s.t. W − Q = 0, SW − P = 0 .

(12) 

The augmented Lagrangian of Eq. (12) is: 

ℒρ(W,Q,P,U1,U2) =
1
2
‖Y − XW‖

2
F + λ1‖Q‖2,1 + λ2‖P‖1

+ < U1,W − Q > +
ρ
2
‖W − Q‖

2
+ < U2, SW − P > +

ρ
2
‖SW − P‖2

,

(13)  

where U1 and U2 are augmented lagrangian multipliers. Thus, the scaled 
form in Eq. (13) can be solved by the following problems. 

Update W: The update function of W at the (t + 1)-th iteration is 
carried out by Eq. (14), 

W(t+1) = arg min
W

1
2
‖Y − XW‖

2
F+ < U(t)

1 ,W − Q(t) > +
ρ
2
‖W − Q(t)‖

2

+ < U(t)
2 , SW − P(t) > +

ρ
2
‖SW − P(t)‖

2
.

(14) 

Note that Eq. (14) is the closed form and a closed solution can be 
obtained by setting its derivative to zero. Eq. (15) is derived: 

0 = − XT(Y − XW) + U(t)
1 + ρ

(
W − Q(t))+ SU(t)

2 + ρS
(
SW − P(t)) . (15) 

Therefore the W(t+1) can be updated efficiently employing Cholesky 
factorization. The optimal solution is given by W(t+1) = F− 1B(t), where 

F = XTX + ρI + ρSS . (16)  

B(t) = XTY − U(t)
1 + ρQ(t) − SU(t)

2 + ρSP(t) . (17) 

Update Q: According to Eq. (13), the update of Q can be solved as the 
following: 

Q(t+1) = arg min
Q

λ1‖Q‖2,1 + <U(t)
1 ,W(t+1) − Q> +

ρ
2
‖W(t+1) − Q‖

2
, (18)  

which is equivalent to the following problem: 

Q(t+1) = arg min
Q

1
2
‖Q − Λ(t+1)

1 ‖
2
+

λ1

ρ ‖Q‖2,1 , (19)  

where Λ(t+1)
1 = W(t+1) +

U(t)
1
ρ . 

It is clear that Eq. (19) can be decoupled into 

q(t+1)
i,⋅ = arg min

qi,⋅

1
2
‖qi,⋅ − α1

(t+1)
i,⋅ ‖

2
+

λ1

ρ ‖qi,⋅‖1 , (20)  

where qi,⋅ and α1 i,⋅ are the i-th row of Q(t+1) and Λ(t+1)
1 respectively. Since 

the update of q(t+1)
i,⋅ is strictly convex, it can be observed that q(t+1)

i,⋅ is its 
unique minimizer. Then we can employ the following lemma to update 
Q(t+1) according to Ref. [26]. 

Lemma 1. For any λ1 ≥ 0, we can calculate Eq. (20) by the following: 

q(t+1)
i,⋅ =

max
(⃦
⃦
⃦
⃦α1

(t+1)
i,⋅ ‖2 −

λ1
ρ , 0

)

⃦
⃦
⃦α1

(t+1)
i,⋅ ‖2

α1
(t+1)
i,⋅ . (21) 

Update P: According to Eq. (13), the update of P can be solved as 
follows: 

P(t+1) = arg min
P

λ2‖P‖1 + <U(t)
2 , SW(t+1) − P> +

ρ
2
‖SW(t+1) − P‖2

, (22)  

which is equivalent to the following problem: 

P(t+1) = arg min
P

1
2
‖P − Λ(t+1)

2 ‖
2
+

λ2

ρ ‖P‖1 , (23)  

where Λ(t+1)
2 = SW(t+1) +

U(t)
2
ρ . Then we can use the following lemma to 

update P(t+1) [48]. 

Lemma 2. For any λ1 ≥ 0, we can calculate Eq. (23) by the following: 

p(t+1)
i,j = sign

(
α2

(t+1)
i,j

)
max

(⃒
⃒
⃒α2

(t+1)
i,j

⃒
⃒
⃒ −

λ1

ρ , 0
)

, (24)  

where p(t+1)
i,j and α2

(t+1)
i,j denote the element of matrix P(t+1) and Λ(t+1)

2 

respectively. 
Update U(t+1)

1 and U(t+1)
2 : According to the standard ADMM, the 

updates of augmented lagrangian multipliers are as follows: 

U(t+1)
1 = U(t)

1 + ρ
(
W(t+1) − Q(t+1)) ,

U(t+1)
2 = U(t)

2 + ρ
(
SW (t+1) − P(t+1)) .

(25) 

Taken together, the proposed method can be summarized in the 
Algorithm 1. 

With Eq. (26), we can solve the G1-norm problem by lemma 3 [49]. 

R(t+1)
Gl ,⋅ = arg min

RGl ,⋅

1
2
‖RGl ,⋅ − Λ3

(t+1)
Gl ,⋅ ‖

2
+

λ3

ρ ‖RGl ,⋅‖ , (26)  

where RGl ,⋅ and Λ3Gl ,⋅ are the rows of R and Λ3 respectively, corre-
sponding to the features in the group Gl. 

Algorithm 1. ADMM optimization of FAS-MTFL   
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Lemma 3. For any λ3 ≥ 0, we have 

R(t+1)
Gl ,⋅ =

max
(⃦
⃦
⃦
⃦Λ3Gl ,⋅‖2 −

λ3vl
ρ , 0

)

⃦
⃦Λ3Gl ,⋅‖2

Λ3Gl ,⋅ , (27)  

where vl is the weight of the l-th feature group. Then the dMTLc 
model in Eq. (10) could be optimized by the algorithm similar to the 
Algorithm 1. With the detailed analysis in Ref. [38], the dMTLl model in 
Eq. (11) could also be optimized by the similar algorithm. 

5. Experiment 

In this section, we first show the results on a synthetic dataset, and 
then the proposed models are extensively evaluated on the Alzheimer’s 
disease neuroimaging initiative (ADNI) datasets. 

5.1. Simulation study 

In this section, we carry out simulations to demonstrate that: (1) the 
proposed generalized multi-task formulation framework that considers 
both the task and feature correlation outperforms MTFL that only con-
siders the task correlation; (2) our FAS-norm penalty could address the 
too restrictive assumption issue of the ℓ2,1-norm penalty and improve 
the prediction performance; (3) the proposed methods are still effective 
in the scenario where tasks have a different number of features. 

5.1.1. Data generation 
In a real-life scenario, each task could have a different number of 

features. For ease of analysis, we construct a simplified case where six 
related tasks (t = 6) are trained together. The first three tasks have D1 
features, and the last three tasks have D2 features. The dimensionalities 
of tasks are denoted by (D1, D2). We consider three possible setups, (D1, 
D2) ∈ {(400, 300), (500, 400), (600, 500)}, and generate synthetic data 

by the linear model y = Xw + ξ. 
First, we generate 50 samples for each setup. The input feature ma-

trix X ∈ R50×D1 is a randomly generated matrix that follows the Gaussian 
distribution with zero mean and standard deviation of 1. Then the 
feature matrix X is multiplied by a matrix to make sure that only the 
correlation coefficient of 0.1*D1 pairs of features are above 0.5. Thus, 
the strong correlation among features is sparse. The first three tasks feed 
the whole X and the last three tasks feed the first D2 features of the X. 
Second, we generate the true models for each setup. The weight vectors 
for the first three tasks are in D1 dimension consisting of g blocks of five, 
i.e. w ∈ RD1 , and vi = 5, g = D1/5 for the disjoint feature groups Gi, i = 1, 
2, …, g. The weight vectors for the last three tasks are similar as the 
above. The number of the non-zero block is 15 for each weight vector. 
Then, the weights of feature pairs that the correlation coefficient up than 
0.5 are nonzero, and the weights are identical for each feature pair. The 
non-zero weights are generated following the Gaussian distribution with 
zero mean and standard deviation of 1. Finally, the input label y is the 
product of X and w with an additive Gaussian noise ξ as y = Xw + ξ, 
where the Gaussian noise ξ is generated following the Gaussian distri-
bution with zero mean and standard deviation of 0.1. 

5.1.2. Settings 
The penalty that incorporates the task correlation is not suitable 

directly in the scenario where multiple tasks have a different number of 
features. To address this issue, we partition the models into multiple 
blocks according to the dimensionality of tasks and the type of the 
penalty. We update the weights for the different penalties based on the 
blocks, as illustrated in the red boxes in Fig. 7. For this particular case, 
we partition the models into eight blocks, where the first block includes 
D2 dimension across all the tasks, the second block includes D1 dimen-
sion across the first three tasks, while each of the third to eighth blocks 
includes a whole weight vector. The penalty Rt(W) that incorporates the 
task correlation denotes the ℓ2,1-norm for this particular case, and the 
Rf(W) includes the FAS-norm and the G1-norm. Specifically, for the third 
to fifth blocks, we introduce the feature correlation matrix C1 ∈ RD1×D1 

constructed by D1 features of X. For the sixth to eighth blocks, we 

Fig. 7. Illustration of the proposed algorithm framework to apply in the scenario that the tasks have a different number of features.  
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introduce the feature correlation matrix C2 ∈ RD2×D2 constructed by the 
first D2 features of X. 

We compare our models (FAS-MTFL and dMTLc) with MTFL. Here, 
the correlation graphs on the features are sparse with a cutoff of 0.5. 
Note that the feature correlation graph is calculated using the training 
data only. We consider the performance measures in terms of the 
normalized mean squared error (nMSE, Eq. (28)) [25,50] and weighted 
R-value (wR, Eq. (29)) [51] that evaluate the overall performance of all 
tasks. The measures are defined as follows: 

nMSE(Y, Ŷ ) =
∑k

h=1
‖Yh − Ŷ h‖

2
2

σ(Yh)
∑k

h=1nh
, (28)  

wR(Y , Ŷ ) =
∑k

h=1Corr(Yh, Ŷh)nh
∑k

h=1nh
, (29)  

where Y is the ground truth of the target and Ŷ is the prediction value. 
Especially, for nMSE, the smaller the value, the better the model per-
formance and the larger value of wR indicates the better performance. 

Grid search for each method is performed, where the range of each 
parameter varies from 0.1 to 1000, and the same training and testing 
data are used for all methods to provide a fair comparison. We randomly 
split the data into training and testing sets using a ratio of 9:1, i.e., we 
build models on 90% of the data and evaluate these models on the 
remaining 10% of the data. In each of the ten trials, a 5-fold nested cross- 
validation procedure is employed to tune the regularization parameters. 
The reported results are the best results of each method with the optimal 
parameters. 

5.1.3. Results 
The results of the simulation study are presented in Fig. 8. As can be 

seen, our proposed methods consistently show the better performance 
over the MTFL. This result is in line with our intuition that, when the 
task correlation and the feature correlation are considered simulta-
neously, multi-task learning methods may discover more stable patterns 
and then perform more accurate prediction results. For FAS-MTFL, we 
obtain that its performance improves 10.22%, 6.18%, and 10.23% in 
nMSE for three setups respectively compared to MTFL. This means that 
our proposed FAS-norm penalty is able to capture the feature correlation 
in multi-task learning and help to improve the prediction performance. 
The above results demonstrate that with the adjusted algorithm illus-
trated in Fig. 7, our proposed multi-task learning framework and FAS- 
norm are still effective in the scenario where tasks have a different 
number of features. 

5.2. ADNI data study 

In this section, the proposed models are extensively evaluated on the 
cross-sectional and longitudinal datasets from ADNI. We first evaluate 
the prediction performance of the methods and then analyze the iden-
tified biomarkers. 

5.2.1. Data 
The real datasets used in this work were obtained from the Alz-

heimers Disease Neuroimaging Initiative (ADNI) database.1 As such, the 
investigators within the ADNI contributed to the design and imple-
mentation of the ADNI and/or provided data but did not participate in 
the analysis or writing of this report. A complete listing of ADNI in-
vestigators can be found.2 

The goal of ADNI is to validate and standardize biomarkers for AD 

clinical trials. In ADNI, all subjects received 1.5 T structural MRI. The 
MRI features used in this paper are based on the imaging data from the 
ADNI database processed by the UCSF (the University of California at 
San Francisco) team. They performed cortical reconstruction and volu-
metric segmentation with the FreeSurfer Software Suite3 according to 
the Desikan-Killany atlas [52]. 

Briefly, this processing includes motion correction and averaging 
[53] of multiple volumetric T1 weighted images (when more than one is 
available), removal of non-brain tissue using a hybrid watershed/sur-
face deformation procedure [54], automated Talairach transformation, 
segmentation of the subcortical white matter and deep gray matter 
volumetric structures (including hippocampus, amygdala, caudate, pu-
tamen, ventricles) [55,56] intensity normalization [57], tessellation of 
the gray matter white matter boundary, automated topology correction 
[58,59], and surface deformation following intensity gradients to opti-
mally place the gray/white and gray/cerebrospinal fluid borders at the 
location where the greatest shift in intensity defines the transition to the 
other tissue class [60–62]. 

In total, 71 cortical regions and 44 subcortical regions were gener-
ated with typically 4 or 1 feature in each region, and the names of the 
regions are listed in Table 2. It can be observed that each cortical region 
contains four features: cortical thickness average (TA), the standard 
deviation of a thickness (TS), surface area (SA), and cortical volume 
(CV). Each subcortical region contains one feature: subcortical volume 
(SV). The surface area (SA) for the hemisphere and the total intracranial 
volume (ICV) are a bit different from the above two regions. In 
conclusion, 319 (=34 × 2 × 4 + 1 × 2 + 1+16 × 2 + 12) features are 
involved in the experiments. 

The clinic cognitive scores explored in this study are shown in 
Table 3. Note that the cognitive scores of patients are given by the ex-
perts according to the gold standard. The further preprocessing of the 
data including (1) removing the samples without baseline MRI records, 
(2) deleting ROIs whose name is “unknown”, (3) deleting features whose 
entries are missed more than 10% (for all patients and all time points), 
(4) deleting samples without labels, (5) replacing the remaining missing 
values with average values. Finally, 788 samples at the baseline are 
obtained as shown in Table 4, where the subjects are categorized into 
three groups: Normal Control (NC), Mild Cognitive Impairment (MCI), 
and Alzheimer’s Disease (AD). The demographics information of all 
subjects at the baseline are shown in Table 5, including age, gender, and 
education. All input data have been normalized by z-scored before 
applying regression methods. 

5.2.2. Settings 
In the cross-sectional analysis, the models are applied on multiple 

cognitive tests and it is assumed that these cognitive tests are correlated. 
Besides, each task inputs the same data (features and sample numbers). 
In the longitudinal analysis, modeling approaches are constructed to 
predict future scores of the specific cognitive test only using the baseline 
MRI data as the input. Since lack of data, each model inputs the same 
features but different sample numbers. 

Grid search for each method is performed, and the same training and 
testing data are used for all methods to provide a fair comparison. Note 
that the feature correlation graph is calculated using the training data 
only. For the quantitative performance evaluation, we employ the 
metrics of correlation coefficient (CC, Eq. (30)) and root mean squared 
error (rMSE, Eq. (31)) between the predicted clinical scores and the 
target clinical scores for each regression task. The measures are defined 
as follows: 

CC(y, ŷ) =
cov(y, ŷ)
σ(y)σ(ŷ) , (30) 

1 http://adni.loni.usc.edu/.  
2 http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknow 

ledgement_List.pdf. 3 http://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferMethodsCitation. 
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rMSE(y, ŷ) =
⃦
⃦y − ŷ‖2

2

n
, (31)  

where y is the ground truth of the target and ŷ is the prediction value. 
Moreover, nMSE (Eq. (28)) and wR (Eq. (29)) are used to evaluate the 
overall performance of all tasks, which have been defined in Section 
5.1.2. Especially, for rMSE and nMSE, the smaller the value, the better 
the model performance, and the larger values of CC and wR indicate the 
better performance. 

We randomly split the data into training and testing sets using a ratio 
of 9:1, i.e., the models are built on 90% of the data and evaluated on the 

remaining 10% of the data. In each of the ten trials, a 5-fold nested cross- 
validation procedure is employed to tune the regularization parameters. 
The range of each parameter varies from 0.1 to 1000. The reported re-
sults are the best results of each method with the optimal parameters. 

5.2.3. Performance in the cross-sectional analysis 
In this experiment, we evaluate the effectiveness of our proposed 

FAS-MTFL and dMTLc methods on the cross-sectional scores prediction, 
comparing with 11 algorithms including:  

(1) single-task learning algorithms: Ridge, Random Forest (RF), 
Support Vector Machine (SVM), XGBoost, and Lasso; 
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Fig. 8. Comparison of different methods on the synthetic data. For nMSE, the smaller the value, the better the model performance. For wR, the larger the value, the 
better the model performance. 

Table 2 
Features from the following 71 cortical regions (the left four columns) and 44 subcortical regions (the right four columns) generated by FreeSurfer.  

ID ROI name Laterality Type ID ROI name Laterality Type 

1 Banks superior temporal sulcus L, R CV, SA, TA, TS 1 Accumbens area L, R SV 
2 Caudal anterior cingulate cortex L, R CV, SA, TA, TS 2 Amygdala L, R SV 
3 Caudal middle frontal gyrus L, R CV, SA, TA, TS 3 Caudate L, R SV 
4 Cuneus cortex L, R CV, SA, TA, TS 4 Cerebellum cortex L, R SV 
5 Entorhinal cortex L, R CV, SA, TA, TS 5 Cerebellum white matter L, R SV 
6 Frontal pole L, R CV, SA, TA, TS 6 Cerebral cortex L, R SV 
7 Fusiform gyrus L, R CV, SA, TA, TS 7 Cerebral white matter L, R SV 
8 Inferior parietal cortex L, R CV, SA, TA, TS 8 Choroid plexus L, R SV 
9 Inferior temporal gyrus L, R CV, SA, TA, TS 9 Hippocampus L, R SV 
10 Insula L, R CV, SA, TA, TS 10 Inferior lateral ventricle L, R SV 
11 IsthmusCingulate L, R CV, SA, TA, TS 11 Lateral ventricle L, R SV 
12 Lateral occipital cortex L, R CV, SA, TA, TS 12 Pallidum L, R SV 
13 Lateral orbital frontal cortex L, R CV, SA, TA, TS 13 Putamen L, R SV 
14 Lingual gyrus L, R CV, SA, TA, TS 14 Thalamus L, R SV 
15 Medial orbital frontal cortex L, R CV, SA, TA, TS 15 Ventricle diencephalon L, R SV 
16 Middle temporal gyrus L, R CV, SA, TA, TS 16 Vessel L, R SV 
17 Paracentral lobule L, R CV, SA, TA, TS 17 Brain stem Bilateral SV 
18 Parahippocampal gyrus L, R CV, SA, TA, TS 18 Corpus callosum anterior Bilateral SV 
19 Pars opercularis L, R CV, SA, TA, TS 19 Corpus callosum central Bilateral SV 
20 Pars orbitalis L, R CV, SA, TA, TS 20 Corpus callosum middle anterior Bilateral SV 
21 Pars triangularis L, R CV, SA, TA, TS 21 Corpus callosum middle posterior Bilateral SV 
22 Pericalcarine cortex L, R CV, SA, TA, TS 22 Corpus callosum posterior Bilateral SV 
23 Postcentral gyrus L, R CV, SA, TA, TS 23 Cerebrospinal fluid Bilateral SV 
24 Posterior cingulate cortex L, R CV, SA, TA, TS 24 Fourth ventricle Bilateral SV 
25 Precentral gyrus L, R CV, SA, TA, TS 25 Non white matter hypointensities Bilateral SV 
26 Precuneus cortex L, R CV, SA, TA, TS 26 Optic chiasm Bilateral SV 
27 Rostral anterior cingulate cortex L, R CV, SA, TA, TS 27 Third ventricle Bilateral SV 
28 Rostral middle frontal gyrus L, R CV, SA, TA, TS 28 White matter hypointensities Bilateral SV 
29 Superior frontal gyrus L, R CV, SA, TA, TS     
30 Superior parietal cortex L, R CV, SA, TA, TS     
31 Superior temporal gyrus L, R CV, SA, TA, TS     
32 Supramarginal gyrus L, R CV, SA, TA, TS     
33 Temporal pole L, R CV, SA, TA, TS     
34 Transverse temporal cortex L, R CV, SA, TA, TS     
35 Hemisphere L, R SA     
36 Total intracranial volume Bilateral ICV      
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(2) multi-task learning algorithms that only incorporate the task 
correlation structures: Multi-task feature learning (MTFL), Multi- 
task feature learning combined with lasso (SGL-MTFL) [28], 
Robust Multi-Task Learning (RMTL) [45], Robust Multi-Task 
Feature Learning (rMTFL) [63] and Trace-norm Multi-Task 
Learning (Trace) [64];  

(3) multi-task learning algorithms that incorporate the feature and 
task correlation structures: Group-Sparse Multi-task Regression 
and Feature Selection (G-SMuRFS) [30]. 

Two experiments are designed in the cross-sectional analysis: (1) five 
of the most common cognitive scores are predicted simultaneously 
(ADAS, MMSE, RAVLT.TOTAL, RAVLT.T30, and RAVLT.RECOG), (2) all 
of eighteen cognitive scores in Table 3 are predicted simultaneously. 
Therefore, our experiments could also reveal how the number of 
cognitive tasks learned at the same time affects the prediction perfor-
mance of the model. Note that, all methods are evaluated on baseline 
MRI input and baseline cognitive output, and only one model is trained 
at a time in single-task learning. The best performance of each column is 
boldfaced. 

The results of the first experiment are reported in Tables 6 and 7. As 
can be seen, our proposed methods consistently showed the best per-
formance over the baseline methods (Ridge, RF, SVM, XGBoost, Lasso, 
and MTFL) on overall prediction measures (nMSE and wR). More spe-
cifically, the nMSE measurements of FAS-MTFL and dMTLc achieve 
declines of 7.16% and 7.01% decline compared to MTFL respectively. 
FAS-MTFL and dMTLc achieve CC gains of 3.91% and 3.52% compared 
to MTFL respectively. This means that our proposed framework and the 
FAS-norm penalty could explore the potential feature relationship, 
which could help to improve predictive performance. 

It can also be observed that the performance of FAS-MTFL is similar 
to that of SGL-MTFL, and SGL-MTFL performs better than dMTLc. First, 
this may be due to the limited data size of ADNI, which results in the 
insufficiency of the model training, so it may produce some results that 
are not significant enough. Second, the learning of each model is rela-
tively easy for these five tasks, and the gap among tasks is small. 
Therefore, adding task correlation structure information in the regula-
rization is more beneficial and the improvement caused by incorpo-
rating feature correlation structure is not significant. Third, the group 
feature correlation imposed in dMTLc may be too restrictive in the five 
tasks experimental condition, thus it weakens the sharing of information 
among tasks and yields suboptimal performance when the task corre-
lation information is more effective. 

Experimental results on 18 cognitive scores in Table 3 are shown in 
Tables 8 and 9. It can be seen that the proposed methods (FAS-MTFL and 
dMTLc) consistently achieve better prediction performance than the 
competing methods, which demonstrates the effectiveness of our 
methods. Besides, the results from Tables 8 and 9 can be compared with 
the results in Tables 6 and 7 It is observed that the prediction perfor-
mance of the dMTLc model improves significantly on nMSE. A possible 
explanation for the observation is that the differences among the 
cognitive scores are rising along with the number of tasks rising. That is 
to say, the feature correlation information becomes more important 

Table 3 
The clinic cognitive scales explored in this study.  

Score Name Description 

ADAS Alzheimers Disease Assessment Scale 
MMSE Mini-Mental State Exam 
RAVLT TOTAL Total score of the first 5 learning trials  

TOT6 Trial 6 total number of words recalled  
TOTB Immediately after the fifth learning trial  
T30 30 min delay total number of words recalled  
RECOG 30 min delay recognition 

FLU ANIM Animal Total score  
VEG Vegetable Total score 

LOGMEM IMMTOTAL Immediate recall  
DELTOTAL Delayed recall 

CLOCK DRAW Clock drawing  
COPYSCORE Clock copying 

BOSNAM Total number correct 
ANART ANART total score 
DSPAN For Digit span forward  

BAC Digit span backward 
DIGIT Digit symbol substitution  

Table 4 
Summary of ADNI dataset.  

Time point Category Total 

NC MCI AD 

Baseline 225 390 173 788 
Month 6 211 352 155 718 
Month 12 198 330 134 662 
Month 24 177 254 101 532 
Month 36 155 189 1 345  

Table 5 
Summary of the demographics information for subjects at the baseline.  

Category NC MCI AD 

Number 225 390 173 
Gender (Male/Female) 116/109 252/138 88/85 
Age (year) 75.87 ± 5.04 74.75 ± 7.39 75.42 ± 7.25 
Education (year) 16.03 ± 2.85 15.67 ± 2.95 14.65 ± 3.17  

Table 6 
Performance comparison of various methods in terms of rMSE and nMSE on five of the most common cognitive scores. For rMSE and nMSE, the smaller the value, the 
better the model performance. FAS-MTFL and dMTLc are significantly better than the results marked with * and † respectively. Student’s t-test at a level of 0.05 was 
used.  

Method ADAS MMSE RAVLT TOTAL T30 RECOG nMSE 

Ridge 7.433 ± 0.477 2.783 ± 0.179 11.18 ± 0.788 4.018 ± 0.298 4.283 ± 0.427 5.885 ± 0.626*†

RF 9.643 ± 0.692 3.056 ± 0.164 13.54 ± 1.424 4.678 ± 0.462 5.062 ± 0.375 8.619 ± 0.881*†

SVM 7.835 ± 0.438 2.928 ± 0.258 12.03 ± 0.956 4.347 ± 0.282 4.847 ± 0.435 6.849 ± 0.748*†

XGBoost 7.220 ± 0.742 2.418 ± 0.184 10.56 ± 0.762 3.673 ± 0.282 3.911 ± 0.257 5.114 ± 0.368*†

Lasso 6.718 ± 0.439 2.174 ± 0.093 10.05 ± 0.631 3.424 ± 0.246 3.633 ± 0.244 4.485 ± 0.346*†

MTFL 7.045 ± 0.474 2.335 ± 0.216 10.04 ± 0.807 3.535 ± 0.309 3.633 ± 0.187 4.677 ± 0.317*†

SGL-MTFL [28] 6.674 ± 0.483 2.186 ± 0.100 9.716 ± 0.675 3.427 ± 0.263 3.611 ± 0.228 4.345 ± 0.314 
RMTL [45] 7.053 ± 0.443 2.706 ± 0.190 10.86 ± 0.751 3.691 ± 0.271 3.926 ± 0.322 5.314 ± 0.533*†

rMTFL [63] 7.020 ± 0.452 2.569 ± 0.308 10.74 ± 0.735 3.629 ± 0.257 3.935 ± 0.344 5.184 ± 0.498*†

G-SMuRFS [30] 6.725 ± 0.465 2.170 ± 0.101 9.741 ± 0.631 3.437 ± 0.227 3.625 ± 0.272 4.373 ± 0.312 
Trace [64] 6.835 ± 0.553 3.062 ± 0.285 10.52 ± 0.746 3.605 ± 0.236 3.797 ± 0.275 5.190 ± 0.455*†

FAS-MTFL 6.683 ± 0.487 2.196 ± 0.101 9.678 ± 0.691 3.434 ± 0.277 3.614 ± 0.217 4.342 ± 0.308 
dMTLc 6.711 ± 0.477 2.206 ± 0.100 9.681 ± 0.674 3.437 ± 0.284 3.618 ± 0.222 4.356 ± 0.295  
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relatively, while task correlation information becomes less important. 
Therefore, dMTLc incorporating more complicated feature correlation 
knowledge performs better. 

It is also observed that several multi-task learning methods (RMTL, 
rMTFL, and Trace) have shown worse prediction performance compared 
to the single-task learning method (Lasso) in the cross-sectional analysis. 

Table 7 
Performance comparison of various methods in terms of CC and wR on five of the most common cognitive scores. For CC and wR, the larger the value, the better the 
model performance. FAS-MTFL and dMTLc are significantly better than the results marked with * and † respectively. Student’s t-test at a level of 0.05 was used.  

Method ADAS MMSE RAVLT TOTAL T30 RECOG wR 

Ridge 0.601 ± 0.053 0.421 ± 0.067 0.407 ± 0.124 0.375 ± 0.135 0.268 ± 0.112 0.415 ± 0.079*†

RF 0.455 ± 0.069 0.331 ± 0.045 0.304 ± 0.137 0.317 ± 0.098 0.221 ± 0.053 0.326 ± 0.039*†

SVM 0.571 ± 0.054 0.345 ± 0.086 0.353 ± 0.131 0.342 ± 0.125 0.204 ± 0.103 0.363 ± 0.074*†

XGBoost 0.599 ± 0.064 0.430 ± 0.105 0.412 ± 0.092 0.450 ± 0.069 0.330 ± 0.114 0.444 ± 0.055*†

Lasso 0.660 ± 0.065 0.546 ± 0.068 0.479 ± 0.107 0.513 ± 0.115 0.406 ± 0.111 0.521 ± 0.079*†

MTFL 0.633 ± 0.086 0.518 ± 0.067 0.490 ± 0.129 0.485 ± 0.126 0.428 ± 0.124 0.511 ± 0.092*†

SGL-MTFL [28] 0.664 ± 0.070 0.545 ± 0.069 0.513 ± 0.099 0.516 ± 0.119 0.418 ± 0.128 0.531 ± 0.082 
RMTL [45] 0.631 ± 0.053 0.429 ± 0.066 0.431 ± 0.116 0.437 ± 0.123 0.337 ± 0.109 0.453 ± 0.079*†

rMTFL [63] 0.637 ± 0.050 0.479 ± 0.054 0.434 ± 0.118 0.448 ± 0.117 0.330 ± 0.109 0.465 ± 0.074*†

G-SMuRFS [30] 0.658 ± 0.065 0.551 ± 0.060 0.509 ± 0.099 0.511 ± 0.111 0.412 ± 0.121 0.528 ± 0.079 
Trace [64] 0.653 ± 0.050 0.367 ± 0.098 0.450 ± 0.116 0.456 ± 0.115 0.360 ± 0.124 0.457 ± 0.087*†

FAS-MTFL 0.663 ± 0.072 0.543 ± 0.072 0.518 ± 0.098 0.515 ± 0.118 0.419 ± 0.129 0.531 ± 0.082 
dMTLc 0.660 ± 0.069 0.539 ± 0.072 0.517 ± 0.099 0.514 ± 0.117 0.417 ± 0.132 0.529 ± 0.082  

Table 8 
Performance comparison of various methods in terms of rMSE and nMSE on eighteen cognitive scores. For rMSE and nMSE, the smaller the value, the better the model 
performance. FAS-MTFL and dMTLc are significantly better than the results marked with * and † respectively. Student’s t-test at a level of 0.05 was used.  

Method ADAS MMSE RAVLT TOTAL TOT6 TOTB T30 RECOG 

Ridge 7.433 ± 0.477 2.783 ± 0.179 11.18 ± 0.788 3.859 ± 0.380 1.984 ± 0.117 4.018 ± 0.298 4.283 ± 0.427 
RF 9.643 ± 0.692 3.056 ± 0.164 13.54 ± 1.424 4.678 ± 0.318 2.377 ± 0.143 4.678 ± 0.462 5.062 ± 0.375 
SVM 7.835 ± 0.438 2.928 ± 0.258 12.03 ± 0.956 4.115 ± 0.343 2.309 ± 0.082 4.347 ± 0.282 4.847 ± 0.435 
XGBoost 7.220 ± 0.742 2.418 ± 0.184 10.56 ± 0.762 3.594 ± 0.274 1.805 ± 0.181 3.673 ± 0.281 3.910 ± 0.257 
Lasso 6.936 ± 0.670 2.258 ± 0.169 10.43 ± 0.767 3.422 ± 0.303 1.731 ± 0.199 3.517 ± 0.210 3.776 ± 0.281 

MTFL 6.881 ± 0.489 2.248 ± 0.105 9.715 ± 0.776 3.339 ± 0.255 1.651 ± 0.162 3.471 ± 0.270 3.608 ± 0.181 
SGL-MTFL [28] 6.689 ± 0.466 2.191 ± 0.104 9.815 ± 0.707 3.317 ± 0.281 1.664 ± 0.163 3.434 ± 0.280 3.618 ± 0.229 
RMTL [45] 7.048 ± 0.473 2.813 ± 0.390 10.93 ± 0.751 3.594 ± 0.372 1.782 ± 0.140 3.727 ± 0.293 3.929 ± 0.420 
rMTFL [63] 6.991 ± 0.443 2.375 ± 0.235 10.79 ± 0.686 3.468 ± 0.330 1.695 ± 0.155 3.602 ± 0.253 3.836 ± 0.401 
G-SMuRFS [30] 6.899 ± 0.533 2.258 ± 0.102 9.673 ± 0.794 3.324 ± 0.256 1.654 ± 0.158 3.442 ± 0.296 3.608 ± 0.202 
Trace [64] 6.885 ± 0.551 2.932 ± 0.132 10.55 ± 0.777 3.481 ± 0.298 1.729 ± 0.136 3.619 ± 0.242 3.748 ± 0.278 
FAS-MTFL 6.696 ± 0.461 2.210 ± 0.102 9.725 ± 0.743 3.319 ± 0.273 1.674 ± 0.165 3.434 ± 0.283 3.617 ± 0.210 
dMTLc 6.679 ± 0.499 2.203 ± 0.090 9.694 ± 0.644 3.316 ± 0.263 1.680 ± 0.168 3.427 ± 0.291 3.616 ± 0.223 

Method FLU LOGMEM CLOCK BOSNAM 
ANIM VEG IMMTOTAL DELTOTAL DRAW COPYSCORE RECOG 

Ridge 6.312 ± 0.603 4.284 ± 0.391 4.673 ± 0.399 5.211 ± 0.542 1.155 ± 0.104 0.779 ± 0.041 4.675 ± 0.423 
RF 7.264 ± 0.530 5.252 ± 0.392 6.153 ± 0.640 6.691 ± 0.424 1.374 ± 0.126 0.875 ± 0.130 5.477 ± 0.494 
SVM 7.047 ± 0.463 4.864 ± 0.316 5.047 ± 0.411 5.626 ± 0.542 1.314 ± 0.149 0.776 ± 0.076 4.868 ± 0.583 
XGBoost 5.641 ± 0.542 4.122 ± 0.308 4.527 ± 0.246 4.957 ± 0.464 1.023 ± 0.141 0.705 ± 0.083 4.313 ± 0.554 
Lasso 5.554 ± 0.434 3.755 ± 0.181 4.382 ± 0.424 4.778 ± 0.514 1.022 ± 0.093 0.665 ± 0.079 4.113 ± 0.553 

MTFL 5.251 ± 0.492 3.729 ± 0.237 4.142 ± 0.377 4.560 ± 0.509 0.971 ± 0.110 0.648 ± 0.882 4.044 ± 0.501 
SGL-MTFL [28] 5.264 ± 0.505 3.681 ± 0.206 4.162 ± 0.358 4.549 ± 0.494 0.988 ± 0.108 0.658 ± 0.086 3.945 ± 0.462 
RMTL [45] 5.861 ± 0.605 3.993 ± 0.283 4.442 ± 0.366 4.897 ± 0.507 1.054 ± 0.091 0.775 ± 0.120 4.484 ± 0.386 
rMTFL [63] 5.599 ± 0.493 3.846 ± 0.281 4.299 ± 0.307 4.768 ± 0.491 1.004 ± 0.154 0.688 ± 0.156 4.211 ± 0.511 
G-SMuRFS [30] 5.245 ± 0.482 3.717 ± 0.232 4.162 ± 0.374 4.565 ± 0.523 0.973 ± 0.108 0.649 ± 0.086 4.044 ± 0.526 
Trace [64] 5.532 ± 0.531 3.873 ± 0.281 4.334 ± 0.376 4.747 ± 0.422 1.013 ± 0.118 0.716 ± 0.072 4.382 ± 0.364 
FAS-MTFL 5.249 ± 0.505 3.686 ± 0.218 4.143 ± 0.372 4.521 ± 0.523 1.009 ± 0.108 0.673 ± 0.088 3.960 ± 0.473 
dMTLc 5.236 ± 0.468 3.679 ± 0.205 4.139 ± 0.372 4.519 ± 0.540 1.004 ± 0.095 0.668 ± 0.074 3.953 ± 0.490  

Method ANART DSPAN DIGIT nMSE 

For BAC 

Ridge 11.21 ± 0.731 2.405 ± 0.207 2.571 ± 0.188 12.76 ± 1.305 5.354 ± 0.325*†

RF 13.32 ± 1.488 2.761 ± 0.187 2.999 ± 0.324 16.41 ± 1.060 7.954 ± 0.469*†

SVM 12.12 ± 0.864 2.848 ± 0.222 3.062 ± 0.138 13.64 ± 1.268 6.370 ± 0.355*†

XGBoost 10.32 ± 0.707 2.187 ± 0.135 2.382 ± 0.236 12.17 ± 0.918 4.644 ± 0.187*†

Lasso 10.39 ± 1.233 2.072 ± 0.235 2.192 ± 0.186 12.26 ± 1.524 4.419 ± 0.530*†

MTFL 9.434 ± 0.698 2.004 ± 0.151 2.117 ± 0.183 11.58 ± 1.275 3.991 ± 0.229*†

SGL-MTFL [28] 9.500 ± 0.680 2.002 ± 0.151 2.131 ± 0.189 11.43 ± 1.296 3.960 ± 0.223*†

RMTL [45] 10.51 ± 0.696 2.174 ± 0.150 2.266 ± 0.199 12.59 ± 1.219 4.815 ± 0.318*†

rMTFL [63] 10.39 ± 0.730 2.036 ± 0.730 2.167 ± 0.208 12.44 ± 1.169 4.512 ± 0.278*†

G-SMuRFS [30] 9.425 ± 0.694 2.010 ± 0.154 2.123 ± 0.190 11.57 ± 1.297 3.984 ± 0.216*†

Trace [64] 10.01 ± 0.666 2.124 ± 0.126 2.214 ± 0.206 12.00 ± 1.306 4.485 ± 0.250*†

FAS-MTFL 9.451 ± 0.679 2.006 ± 0.156 2.141 ± 0.192 11.38 ± 1.263 3.945 ± 0.221 
dMTLc 9.421 ± 0.680 1.999 ± 0.155 2.133 ± 0.193 11.28 ± 1.273 3.920 ± 0.194  
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These results demonstrate that the task correlation information added 
by these multi-task learning methods is not suitable for AD research 
studies, i.e. the pattern of sharing knowledge among tasks is different for 
various problem areas, and the prior structural knowledge incorporated 
in the training phase affects the prediction performance of the model 
significantly. 

5.2.4. Performance in the longitudinal analysis 
In the longitudinal study, the patients will be followed up for a period 

of time, and thus the data could be used to build predictive models for 
multiple time points. To estimate the effectiveness of the proposed 
models (FAS-MTFL and dMTLl) in the longitudinal analysis, we compare 
them to the single-task learning method (Lasso) and the multi-task 
learning method (MTFL) on four of the most common cognitive scores 
(ADAS, RAVLT.TOTAL, RAVLT.RECOG, and FLU.ANIM). The experi-
ment settings are the same as that of the cross-sectional analysis. 

Experimental results of nMSE and wR are reported in Table 10 where 
the best results are boldfaced. We can derive several observations. First, 
the multi-task learning models outperform the single-task learning 
model (Lasso), which justifies the use of longitudinal task correlation 
information in multi-task learning models, and verifies that the tasks are 

Table 9 
Performance comparison of various methods in terms of CC and wR on eighteen cognitive scores. For CC and wR, the larger the value, the better the model perfor-
mance. FAS-MTFL and dMTLc are significantly better than the results marked with * and † respectively. Student’s t-test at a level of 0.05 was used.  

Method ADAS MMSE RAVLT TOTAL TOT6 TOTB T30 RECOG 

Ridge 0.601 ± 0.053 0.421 ± 0.067 0.407 ± 0.124 0.362 ± 0.133 0.141 ± 0.090 0.375 ± 0.135 0.268 ± 0.112 
RF 0.455 ± 0.069 0.331 ± 0.045 0.304 ± 0.137 0.253 ± 0.080 0.110 ± 0.098 0.317 ± 0.098 0.221 ± 0.053 
SVM 0.571 ± 0.054 0.345 ± 0.086 0.353 ± 0.131 0.354 ± 0.125 0.063 ± 0.107 0.342 ± 0.125 0.203 ± 0.103 
XGBoost 0.599 ± 0.064 0.430 ± 0.105 0.412 ± 0.092 0.414 ± 0.078 0.203 ± 0.077 0.450 ± 0.069 0.330 ± 0.114 
Lasso 0.638 ± 0.071 0.510 ± 0.057 0.455 ± 0.104 0.466 ± 0.111 0.271 ± 0.124 0.489 ± 0.100 0.375 ± 0.131 

MTFL 0.638 ± 0.077 0.541 ± 0.066 0.512 ± 0.107 0.488 ± 0.123 0.331 ± 0.087 0.495 ± 0.109 0.419 ± 0.124 
SGL-MTFL [28] 0.665 ± 0.065 0.548 ± 0.068 0.504 ± 0.094 0.500 ± 0.122 0.320 ± 0.081 0.512 ± 0.111 0.415 ± 0.126 
RMTL [45] 0.629 ± 0.052 0.408 ± 0.067 0.421 ± 0.131 0.414 ± 0.145 0.209 ± 0.104 0.434 ± 0.124 0.330 ± 0.114 
rMTFL [63] 0.636 ± 0.051 0.506 ± 0.056 0.429 ± 0.122 0.443 ± 0.122 0.275 ± 0.082 0.455 ± 0.117 0.343 ± 0.115 
G-SMuRFS [30] 0.638 ± 0.077 0.542 ± 0.065 0.522 ± 0.097 0.497 ± 0.118 0.327 ± 0.080 0.511 ± 0.104 0.419 ± 0.127 
Trace [64] 0.645 ± 0.054 0.366 ± 0.086 0.443 ± 0.128 0.444 ± 0.135 0.244 ± 0.119 0.454 ± 0.116 0.373 ± 0.122 
FAS-MTFL 0.664 ± 0.066 0.542 ± 0.071 0.515 ± 0.093 0.500 ± 0.120 0.324 ± 0.088 0.513 ± 0.110 0.417 ± 0.128 
dMTLc 0.664 ± 0.066 0.537 ± 0.067 0.515 ± 0.094 0.503 ± 0.119 0.307 ± 0.056 0.519 ± 0.115 0.418 ± 0.131 

Method FLU LOGMEM CLOCK BOSNAM 
ANIM VEG IMMTOTAL DELTOTAL DRAW COPYSCORE RECOG 

Ridge 0.201 ± 0.130 0.389 ± 0.128 0.418 ± 0.111 0.433 ± 0.121 0.227 ± 0.107 0.133 ± 0.095 0.363 ± 0.145 
RF 0.181 ± 0.118 0.272 ± 0.073 0.215 ± 0.100 0.276 ± 0.109 0.174 ± 0.148 0.114 ± 0.119 0.306 ± 0.087 
SVM 0.134 ± 0.118 0.314 ± 0.122 0.385 ± 0.096 0.388 ± 0.130 0.174 ± 0.117 0.135 ± 0.106 0.333 ± 0.135 
XGBoost 0.296 ± 0.118 0.357 ± 0.106 0.404 ± 0.079 0.445 ± 0.082 0.335 ± 0.126 0.163 ± 0.096 0.377 ± 0.110 
Lasso 0.315 ± 0.097 0.495 ± 0.076 0.473 ± 0.115 0.507 ± 0.123 0.334 ± 0.055 0.068 ± 0.115 0.444 ± 0.101 

MTFL 0.395 ± 0.084 0.490 ± 0.091 0.511 ± 0.084 0.531 ± 0.094 0.389 ± 0.085 0.223 ± 0.097 0.465 ± 0.103 
SGL-MTFL [28] 0.384 ± 0.100 0.509 ± 0.080 0.503 ± 0.091 0.535 ± 0.102 0.380 ± 0.076 0.232 ± 0.100 0.484 ± 0.093 
RMTL [45] 0.265 ± 0.129 0.441 ± 0.107 0.455 ± 0.100 0.475 ± 0.112 0.340 ± 0.104 0.166 ± 0.088 0.386 ± 0.129 
rMTFL [63] 0.299 ± 0.126 0.473 ± 0.104 0.474 ± 0.103 0.488 ± 0.120 0.373 ± 0.090 0.230 ± 0.097 0.424 ± 0.138 
G-SMuRFS [30] 0.396 ± 0.073 0.498 ± 0.086 0.508 ± 0.087 0.534 ± 0.092 0.379 ± 0.081 0.224 ± 0.113 0.458 ± 0.082 
Trace [64] 0.318 ± 0.112 0.456 ± 0.089 0.467 ± 0.094 0.496 ± 0.092 0.333 ± 0.111 0.165 ± 0.094 0.378 ± 0.124 
FAS-MTFL 0.389 ± 0.096 0.509 ± 0.079 0.511 ± 0.090 0.543 ± 0.098 0.378 ± 0.078 0.231 ± 0.103 0.481 ± 0.086 
dMTLc 0.389 ± 0.090 0.510 ± 0.081 0.511 ± 0.092 0.543 ± 0.101 0.365 ± 0.073 0.234 ± 0.105 0.479 ± 0.087  

Method ANART DSPAN DIGIT wR 

For BAC 

Ridge 0.049 ± 0.083 0.011 ± 0.060 0.031 ± 0.118 0.390 ± 0.045 0.290 ± 0.055*†

RF 0.057 ± 0.168 0.025 ± 0.099 − 0.01 ± 0.114 0.175 ± 0.118 0.210 ± 0.029*†

SVM 0.038 ± 0.106 − 0.03 ± 0.056 − 0.04 ± 0.103 0.325 ± 0.080 0.244 ± 0.055*†

XGBoost 0.046 ± 0.103 0.020 ± 0.068 0.013 ± 0.131 0.384 ± 0.091 0.316 ± 0.032*†

Lasso 0.100 ± 0.087 0.026 ± 0.073 0.129 ± 0.094 0.402 ± 0.077 0.361 ± 0.051*†

MTFL 0.160 ± 0.121 0.027 ± 0.075 0.210 ± 0.129 0.429 ± 0.114 0.403 ± 0.063*†

SGL-MTFL [28] 0.161 ± 0.100 0.050 ± 0.117 0.180 ± 0.130 0.460 ± 0.064 0.408 ± 0.055* 
RMTL [45] 0.075 ± 0.073 0.021 ± 0.066 0.121 ± 0.106 0.401 ± 0.066 0.333 ± 0.064*†

rMTFL [63] 0.085 ± 0.071 0.092 ± 0.092 0.157 ± 0.122 0.402 ± 0.043 0.366 ± 0.056*†

G-SMuRFS [30] 0.161 ± 0.116 0.001 ± 0.062 0.189 ± 0.140 0.432 ± 0.107 0.402 ± 0.061*†

Trace [64] 0.098 ± 0.071 − 0.03 ± 0.110 0.138 ± 0.086 0.418 ± 0.049 0.345 ± 0.065*†

FAS-MTFL 0.165 ± 0.107 0.057 ± 0.126 0.183 ± 0.139 0.463 ± 0.068 0.410 ± 0.057 
dMTLc 0.176 ± 0.105 0.097 ± 0.118 0.193 ± 0.130 0.467 ± 0.065 0.413 ± 0.056  

Table 10 
Performance comparison of various methods in terms of nMSE and wR on the 
prediction of ADAS, RAVLT.TOTAL, RAVLT.RECOG and FLU.ANIM scores of the 
longitudinal formulation. For nMSE, the smaller the value, the better the model 
performance. For wR, the larger the value, the better the model performance. 
FAS-MTFL and dMTLl are significantly better than the results marked with * and 
† respectively. Student’s t-test at a level of 0.05 was used.   

Lasso MTFL FAS-MTFL dMTLl 

Score: ADAS 
nMSE 6.524 ± 0.348*† 6.389 ± 0.339*† 6.005 ± 0.344† 5.755 ± 0.376 
wR 0.634 ± 0.022*† 0.647 ± 0.026*† 0.665 ± 0.022† 0.687 ± 0.026 
Score: RAVLT.TOTAL 
nMSE 9.706 ± 0.592*† 8.655 ± 0.555† 8.598 ± 0.511† 8.378 ± 0.515 
wR 0.496 ± 0.032*† 0.563 ± 0.032† 0.563 ± 0.030 0.573 ± 0.031 
Score: RAVLT.RECOG 
nMSE 3.281 ± 0.079*† 3.167 ± 0.116* 3.134 ± 0.108 3.119 ± 0.101 
wR 0.477 ± 0.031*† 0.502 ± 0.035*† 0.509 ± 0.032 0.515 ± 0.033 
Score: FLU.ANIM 
nMSE 5.082 ± 0.427*† 4.984 ± 0.459*† 4.772 ± 0.375† 4.716 ± 0.335 
wR 0.402 ± 0.060*† 0.431 ± 0.061*† 0.453 ± 0.053† 0.466 ± 0.043  
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not independent and capturing their relatedness can improve the pre-
diction performance. Second, our proposed FAS-MTFL and dMTLl 
consistently achieve better prediction performance than MTFL, which 
demonstrates the effectiveness of our framework and the FAS-norm 
penalty. That is to say, the combination of the task correlation struc-
ture and the feature correlation structure allows more stable and sen-
sitive biomarkers selection for tasks, which could improve the prediction 

performance. Finally, our dMTLl obtain better prediction results than 
other models. This demonstrates that our proposed general multi-task 
learning formulation in Eq. (5) is beneficial to the predicting of dis-
ease progression for incorporating complete task and feature correlation 
information. 

Comparative bar charts for all time points between the comparable 
approaches are shown in Fig. 9. These results reveal several interesting 
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Fig. 9. Comparison of different methods on longitudinal prediction in terms of rMSE and CC.  
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points:  

1. The figure shows that the prediction performance of ADAS is better 
than that of RAVLT.TOTAL. A possible explanation is that the tem-
poral patterns of these cognitive scores are different, which results in 
the different performances of one model on the different cognitive 
scores prediction.  

2. It can be observed that the performances for predicting earlier time 
point scores are often better than those for later time point scores, 
and the performance at the last time point (M36) declines obviously 
for most models. Some authors have speculated that the lack of 
predictable biomarkers in later stages is a potential factor [25]. 
Another possible explanation for this is that the learning of the later 
prediction models is more difficult for the number of the available 
samples is reducing.  

3. FAS-MTFL consistently outperforms MTFL at all tasks except M06 of 
the RAVLT.TOTAL, which demonstrates that integrating the implicit 
feature correlation by the FAS-norm penalty can overcome the lim-
itation of MTFL and improve the prediction performance.  

4. Although dMTLl shows the best overall performance at all time 
points in Table 10, it witnesses sub-optimal performances in pre-
dicting later time point scores (M24, M36) in Fig. 9 compared with 
FAS-MTFL. This inconsistency may be that it is hard for dMTLl to 
only incorporate the fused lasso penalty to identify task shared bio-
markers, for lack of the predictable MRI biomarkers from the input 
data in later time points. On the other hand, the ℓ2,1-norm penalty 
tends to select a set of features over all time points, which helps the 

FAS-MTFL model to achieve good performance in the later time 
points. That is to say, learning the early time point scores is beneficial 
to the learning of the later time point scores. 

5.2.5. Analysis of biomarkers 
The identification of sensitive and stable biomarkers will help to 

diagnose and prognosis the disease. In this section, we analyze the 
biomarker patterns in both cross-sectional and longitudinal experi-
ments. The features and ROIs are sorted by the weight calculated as 
follows. We first average the corresponding parameters in the repeated 
experiments and then denote the ℓ2-norm of the feature’s parameters as 
its weight. In order to eliminate the bias arising from the different 
number of features in ROIs, the ℓ2-norm of ROIs’ parameters are divided 
by ̅̅̅̅vj

√ , where vj is the number of features in ROI j. 
Biomarkers in the cross-sectional analysis. Fig. 10 are the heat 

maps of the weights of all ROIs in each brain hemisphere for MTFL, FAS- 
MTFL, and dMTLc in the eighteen cognitive score cross-sectional ex-
periments. The larger the value of the weight, the more important its 
corresponding ROI is in predicting the corresponding cognitive score. 
First, the value range of weights of ROIs in the left hemisphere is bigger 
than that in the right hemisphere, which demonstrates that the left 
hemisphere is more important than the right hemisphere in AD. This 
observation has been verified in Ref. [65], in which W. Zhang et al. 
found that the left hemisphere was more severely affected than the right 
during the early disease stage. Second, it can be observed clearly that the 
left hippocampus [66,67], the left inferior lateral ventricle [68,69], the 
left middle temporal [70], and the right entorhinal [11,71] are 
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Fig. 10. Heat maps of all ROIs in each brain hemisphere for each method. The vector of ROIs was estimated from models in the eighteen cognitive score cross- 
sectional experiments. MTFL: Multi-task feature learning; FAS-MTFL: Feature-aware sparse multi-task feature learning; dMTLc: Dual feature correlation guided 
multi-task feature learning. (a) The ROIs in the left hemisphere. (b) The ROIs in the right hemisphere. 
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important ROIs for all models. These identified brain regions have been 
shown to be highly related to AD progression in the previous works. 
Finally, it can be seen that our proposed models (FAS-MTFL and dMTLc) 
identify more ROIs than MTFL. This indicates that our methods can 
identify the missing features of MTFL because of incorporating prior 
feature structure knowledge. The ROIs selected by different methods 
will be compared in detail in the following. The specific top fifteen 
features and top fifteen ROIs identified in the eighteen cognitive score 
cross-sectional experiments are listed in Tables 11 and 12, respectively. 

From the identified important features in Table 11, we can derive 
several interesting observations:  

1. The surface area of the left superior parietal, cortical thickness 
average of left precuneus, and surface area of left rostral anterior 
cingulate are identified by FAS-MTFL compared with the result of 
MTFL. Since FAS-MTFL incorporates the FAS-norm penalty to add 
prior feature structural knowledge, the weights of features that are 
strongly correlated to the important features ascend. In other words, 
these features are strongly correlated with other important features, 
which can be confirmed by the feature correlation matrix C. Speak 
specifically, the correlation coefficients between the surface area of 
the left superior parietal and hippocampus, the surface area of the 
left rostral anterior cingulate and hippocampus are high. We also 
witness strong correlation coefficients between cortical thickness 
average of the left precuneus and superior frontal, cortical thickness 
average of the left precuneus and inferential parietal, cortical 
thickness average of the left precuneus and middle temporal. Several 

studies [72,73] have found these features missed by MTFL are highly 
suggestive and effective for tracking the progression of AD.  

2. Similar to FAS-MTFL, dMTLc has selected several features missed by 
MTFL, such as the subcortical volume of corpus callosum anterior, 
the subcortical volume of corpus callosum mid posterior, and the 
surface area of the left superior parietal. The reason is due to the 
incorporation of the FAS-norm penalty, which is the same as the one 
of FAS-MTFL. In previous studies [74–76], these regions are reported 
to be highly associated with the AD.  

3. The number of features from the same brain region increases in 
dMTLc compared to FAS-MTFL and MTFL. For example, dMTLc se-
lects three features from the right entorhinal (cortical volume of right 
entorhinal, cortical thickness average of right entorhinal, and stan-
dard deviation of thickness of right entorhinal) while FAS-MTFL and 
MTFL select two (cortical volume of right entorhinal and cortical 
thickness average of right entorhinal). This result verifies that the G1- 
norm penalty tends to select or delete all features in every ROI. 

Table 12 shows the important ROIs in the eighteen cognitive score 
cross-sectional experiments. It can be observed that the ranking of 
several ROIs in the three methods rises in turn, such as inferior lateral 
ventricle and entorhinal. A possible explanation is that adding feature 
correlation structure makes closely related important ROIs strengthen 
each other’s importance. In addition, our methods select several ROIs 
that are not identified in MTFL, such as corpus callosum anterior, corpus 
callosum mid posterior, lateral ventricle, superior parietal, and isthmus 
cingulate. This may be because the changes of such ROIs are difficult to 

Table 11 
The important features in the eighteen cognitive score cross-sectional experiments.  

MTFL FAS-MTFL dMTLc 

features name weight features name weight features name weight 

SV of L.Hippocampus 3.733 SV of L.Hippocampus 4.043 SV of L.Hippocampus 4.253 
TA of L.MidTemporal 3.509 TA of L.MidTemporal 2.964 TA of L.MidTemporal 2.210 
CV of R.Entorhinal 2.292 CV of R.Entorhinal 2.521 CV of R.Entorhinal 1.890 
SV of L.LateralVentricle 1.587 SV of L.LateralVentricle 1.587 SV of L.LateralVentricle 1.868 
TA of R.Entorhinal 1.306 TA of R.Entorhinal 1.263 TA of R.Entorhinal 1.433 
TA of R.IsthmusCingulate 0.596 SA of L.SuperiorParietal 1.097 SV of FourthVentricle 1.187 
TA of L.Parahippocampal 0.548 SV of FourthVentricle 0.961 SV of CCAnterior 1.121 
TS of L.SuperiorFrontal 0.513 SA of L.ParsTriangularis 0.935 SV of CCMidPosterior 0.966 
TA of R.InferiorParietal 0.427 TS of L.SuperiorFrontal 0.881 SV of WMHypoIntensities 0.865 
TA of L.InferiorTemporal 0.268 SV of CCAnterior 0.830 SV of L.ChoroidPlexus 0.823 
SV of L.ChoroidPlexus 0.244 TS of L.IsthmusCingulate 0.794 SA of L.SuperiorParietal 0.809 
SV of WMHypoIntensities 0.225 TA of L.Precuneus 0.761 SA of L.ParsTriangularis 0.781 
TS of L.ParsTriangularis 0.206 SA of L.RostralAnteriorCingulate 0.756 CV of L.MidTemporal 0.741 
TA of L.InferiorParietal 0.183 TS of L.ParsTriangularis 0.750 TS of L.IsthmusCingulate 0.731 
TS of L.Paracentral 0.166 SV of WMHypoIntensities 0.744 TS of R.Entorhinal 0.683  

Table 12 
The important ROIs in the eighteen cognitive score cross-sectional experiments.  

MTFL FAS-MTFL dMTLc 

ROIs name weight ROIs name weight ROIs name weight 

L.Hippocampus 3.733 L.Hippocampus 4.043 L.Hippocampus 4.253 
L.MidTemporal 1.754 L.LateralVentricle 1.587 L.LateralVentricle 1.868 
L.LateralVentricle 1.587 L.MidTemporal 1.484 R.Entorhinal 1.192 
R.Entorhinal 1.308 R.Entorhinal 1.354 FourthVentricle 1.187 
R.IsthmusCingulate 0.298 FourthVentricle 0.961 L.MidTemporal 1.152 
L.Parahippocampal 0.274 CCAnterior 0.830 CCAnterior 1.121 
L.SuperiorFrontal 0.257 WMHypoIntensities 0.744 CCMidPosterior 0.966 
L.ChoroidPlexus 0.244 L.ChoroidPlexus 0.699 WMHypoIntensities 0.865 
WMHypoIntensities 0.225 CCMidPosterior 0.672 L.ChoroidPlexus 0.823 
R.InferiorParietal 0.214 R.LateralVentricle 0.657 R.LateralVentricle 0.654 
L.InferiorTemporal 0.134 L.SuperiorParietal 0.549 L.ParsTriangularis 0.490 
L.ParsTriangularis 0.103 L.ParsTriangularis 0.507 L.SuperiorParietal 0.468 
L.InferiorParietal 0.093 L.SuperiorFrontal 0.440 L.IsthmusCingulate 0.446 
L.Paracentral 0.083 L.IsthmusCingulate 0.413 L.InferiorParietal 0.423 
L.Precuneus 0.080 L.Bankssts 0.386 R.AccumbensArea 0.400  
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detect for MTFL that only considers the task correlation structure in-
formation. For instance, P. J. Wang et al. suggested that corpus callosum 
changes occur very early in the dementing process, and that these 
earliest changes may be too subtle for detection by neuropsychological 
tests [75]. 

The visualization of the identified important ROIs in Table 12 is 
shown in Fig. 11. Visually, the identified ROIs are mainly distributed in 
the left hemisphere of the brain. Some authors have found that the left 
hemisphere is more severely affected than the right during the early 
disease stage [65]. 

Biomarkers in the longitudinal analysis. For ease of exposition, 
we just plot the ROI magnitudes of ADAS and RAVLT.TOTAL for the 
longitudinal experiments, which are shown in Fig. 12. From the stable 
ROIs for ADAS shown in Fig. 12(a), several interesting observations can 
be derived: (1) some regions are important in all time points, such as the 
left hippocampus, left middle temporal, and right entorhinal; (2) some 
regions only work in the later time points, such as the left amygdala, and 
(3) some regions have strong weights during the first 2 years after 
baseline screening, such as left inferior temporal and left inferior pari-
etal. These observations are consistent with the results in Ref. [25]. For 
example, Zhou et al. found that cortical thickness average of left middle 
temporal, cortical thickness average of left and right entorhinal, and 
white matter volume of left hippocampus are important biomarkers for 
all time points. 

The longitudinal pattern of RAVLT.TOTAL is shown in Fig. 12(b), 
which is slightly different from that of ADAS. Specifically, some ROIs are 
selected in RAVLT.TOTAL only, such as corpus callosum mid posterior, 
right cerebral white matter, left and right precentral, right precuneus, 
and left fusiform. The different temporal patterns of biomarkers for 
these two scores suggest that just restricting several cognitive scores to 
share a common set of features may cause suboptimal performance. 
Meanwhile, it can be observed that most ROIs provide significant in-
formation in the first year, while few effective ROIs are available at the 
last time point. A possible explanation for these results may be the lack 
of adequate predictable MRI biomarkers in later stages [25]. 

5.2.6. Comparison with the state-of-the-art methods 
A lot of works have studied the relationship between imaging 

markers (such as brain MRI) and cognitive scores using the ADNI 
dataset. Table 13 compares the result of our ADAS score prediction of 
the longitudinal analysis with the state-of-the-art works in terms of 
correlation coefficient (CC) as reported in the respective references. It 
can be observed that our method performs competitively. Specifically, 
our method achieves an average correlation coefficient of 0.670. Our 
method mainly faces the following challenges. First, compared with 
other methods, all available instances are used in this paper without 
sample selection. Poor quality data may bring challenges to model 
training. Second, compared with the methods that only predict one 
future time point score [27,77], it is more challenging to predict mul-
tiple scores in the future. In particular, we only use MRI data as the input 
compared with [27] which inputs multimodal data. The lack of available 
features poses a greater challenge to our method. Third, compared with 
[37,40,78], our method only uses the baseline MRI data to predict 
cognitive scores in more time points. 

Despite the above challenges, our method shows the best perfor-
mance. On the one hand, compared with the methods that only predict 
one future time point score [27,77], the power of the correlation among 
cognitive scores at multiple time points to promote extracting the un-
derlying patterns from data has been well recognized. On the other 
hand, experiments demonstrate that the proposed dMTLl model per-
forms better than the other methods that predict multiple cognitive 
scores simultaneously [37,40,78]. Although a previous study in Wang 
et al. [40] reported a similar correlation coefficient, a number of subjects 
with multiple time points data are used for training the models. In 
summary, the results demonstrate that it is beneficial to predict to 
simultaneously take both the feature correlation and the task correlation 
information into account. 

6. Discussions 

This paper proposes a generalized multi-task formulation framework 
and a novel feature-aware sparsity-inducing norm (FAS-norm) penalty 
with the view that the feature correlation structure can help multi-task 
learning to discover more stable biomarkers and achieve better predic-
tion performance. This section discusses the broad applicability of the 
framework, the prediction performance, and the biomarker identifica-
tion performance. 

6.1. Application of the proposed framework on the other datasets 

In this set of experiments, we conduct the multi-task classification on 
the dataset from the UCI data archive to evaluate the effectiveness of the 
proposed generalized multi-task formulation framework applied to the 
other structural data. 

A multi-view dataset is used in our experiments, Mfeat.4 The Mfeat 
dataset consists of features of handwritten numerals (‘0’-‘9′) extracted 
from a collection of Dutch utility maps. 200 patterns per class (for a total 
of 2000 patterns) have been digitized in binary images. We separate ‘0’- 
‘4’ (the first dataset) and ‘5’-‘9’ (the second dataset) to form two ex-
periments and choose five views to construct five feature groups, 
including Fourier coefficients of the character shapes, profile correla-
tions, Karhunen-Love coefficients, pixel and Zernike moments (see 
Table 14). In each experiment, a classification model is set up for each 
label. We determine the performance of the classification task by 
calculating class-specific F1 scores: 

F1 = 2 ×
precision × recall
precision + recall

. (32) 

Especially, the larger value of F1 indicates the better performance. 

Fig. 11. The visualization of the identified important ROIs in the eighteen 
cognitive score cross-sectional experiments. The brain regions are segmented 
based on the Desikan-Killiany atlas. The name of the ROIs is listed in Table 12. 

4 https://archive.ics.uci.edu/ml/datasets/Multiple+Features. 
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We randomly split the data into training and testing sets using a ratio of 
9:1, i.e., we build models on 90% of the data and evaluate these models 
on the remaining 10% of the data. In each of the ten trials, a 5-fold 
nested cross-validation procedure is employed to tune the regulariza-
tion parameters. The range of each parameter varies from 0.1 to 1000. 
The reported results are the best results of each method with the optimal 
parameters. 

Experimental results are shown in Fig. 13. Intuitively, the multi-task 
learning methods outperform the single-task learning methods. This 

justifies the motivation of learning correlated multiple tasks simulta-
neously and verifies that capturing their relatedness can improve 
learning performance. Meanwhile, the proposed multi-task learning 
models (FAS-MTFL and dMTLc) outperform MTFL overall, and our 
methods lead to the best prediction performance in most cases. This 
result demonstrates the importance of incorporating the feature corre-
lation structure information in the training phase. Thanks to incorpo-
rating the feature structure information, the results of the restrictive 
assumption (only tasks are correlated) have been promoted. To sum up, 
in the proposed generalized multi-task formulation framework, 

Fig. 12. The visualization of the important ROIs identified by our proposed dMTLl in longitudinal experiments for ADAS and RAVLT.TOTAL. The brain regions are 
segmented based on the Desikan-Killiany atlas. (a) ADAS, (b) RAVLT.TOTAL. 

Table 13 
Comparison with the state-of-the-art methods in terms of correlation coefficient 
(CC) in ADAS score prediction.  

Method Subjects Features Target 
(ADAS) 

CC 

AD MCI NC 

Fan et al., 
2010 [77] 

52 148 64 BL (MRI) M06 0.522 

Zhang et al., 
2012 [27] 

45 91 50 BL (MRI, PET, 
CSF) 

M24 0.531 ±
0.032 

Jie et al., 
2017 [37] 

91 202 152 BL M06 M12 
M24 (MRI) 

BL M06 M12 
M24 

0.639 ±
0.008 

Lei et al., 
2019 [78] 

91 202 152 BL M06 M12 
M24 (MRI) 

BL M06 M12 
M24 

0.655 

Wang et al., 
2019 [40] 

91 202 152 BL M06 M12 
M24 (MRI) 

BL M06 M12 
M24 

0.664 ±
0.025 

dMTLl 
(ours) 

173 390 225 BL (MRI) BL M06 M12 
M24 M36 

0.670 ± 
0.075  

Table 14 
The constitutions of two datasets in the experiments.  

Dataset Samples Feature groups Features 

The first dataset: ‘0’- 
‘4′

1000 1. Fourier coefficients of the 
character shapes 

76 

2. Profile correlations 216 
3. Karhunen-Love coefficients 64 
4. Pixel 240 
5. Zernike moments 47 

The second dataset: 
‘5’-‘9′

1000 1. Fourier coefficients of the 
character shapes 

76 

2. Profile correlations 216 
3. Karhunen-Love coefficients 64 
4. Pixel 240 
5. Zernike moments 47    
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incorporating the feature structure in multi-task learning allows 
learning more stable and accurate patterns. Despite the fact that our 
framework is proposed for the AD research problem, it could be applied 
to other structural data. 

6.2. Prediction performance 

From Section 5, we can see that our methods consistently outperform 
MTFL. Specifically, FAS-MTFL achieves the best prediction performance 
with a 7.16% decrease in nMSE compared with MTFL for the five task 
cross-sectional experiments. dMTLc achieves the best prediction per-
formance with a 1.78% decrease in nMSE compared with MTFL for the 
eighteen task cross-sectional experiments. Meanwhile, compared with 
MTFL, our methods achieve average overall error declines of 7.97%, 
1.93%, 1.28%, and 4.82% in the longitudinal analysis for the ADAS, the 
RAVLT.TOTAL, the RAVLT.RECOG, and the FLU.ANIM respectively. 

In addition, there are interesting observations: (1) FAS-MTFL ach-
ieves similar performance to SGL-MTFL, and SGL-MTFL achieves better 
prediction performance compared with dMTLc in the five task cross- 
sectional experiments; (2) The performances of dMTLc and FAS-MTFL 
are significantly better than that of SGL-MTFL on nMSE in the eigh-
teen task cross-sectional experiments. These observations may have the 
following reasons. First, this is partially due to the limited data size of 
ADNI. The limited sample number hinders the model training, so it may 
produce some results that are not significant enough. Second, it may be 
that the gaps among the cognitive scores are rising along with the 
number of tasks rising. The feature correlation information becomes 
relatively more important in the eighteen task experiments compared 
with the five task experiments. Therefore adding feature correlation 
information into the models will improve the prediction performance. 
Third, the number of cognitive scores learned together will affect the 
common information shared among tasks. Adding suitable prior struc-
tural knowledge will improve the prediction performance of the model. 

6.3. Biomarker identification performance 

We incorporate the implicit feature correlation information in multi- 
task learning to identify the sensitive and stable biomarkers that provide 
the diagnostic indicators of AD. In Section 1, the cross-regional feature 
correlation was analyzed in Fig. 2. Further more, the important features 
and the important ROIs derived from experiments are listed in Tables 11 
and 12 respectively. Comparing the calculated correlation in Fig. 2 and 
the identified biomarkers in Tables 11 and 12, the inconsistent and the 
consistent result can be seen. On the one hand, it can be observed that 
the left and right hemispheres are the most important ROIs from Fig. 2 
because of the longest arcs of these two ROIs, but they are not selected in 
the experiments. This is because the left and right hemispheres are 

correlated with most ROIs in the anatomy but irrelevant to AD predic-
tion. The results demonstrate that our generalized multi-task formula-
tion framework and FAS-norm penalty could incorporate the effective 
feature correlation information but not redundant information. On the 
other hand, some ROIs that are only identified by our methods, such as 
the corpus callosum anterior, corpus callosum mid posterior, and lateral 
ventricle, are plotted in Fig. 2. This result confirms our initial hypothesis 
that incorporating feature correlated information will help us identify 
the stable and sensitive biomarkers which are difficult to be detected 
only using the task correlation information. 

Comparing the important ROIs between the cross-sectional and the 
longitudinal experiments, we can derive several interesting observa-
tions. First, some biomarkers are only identified in the longitudinal ex-
periments, such as parahippocampal and amygdala. This difference may 
be that the atrophy of the parahippocampal and amygdala is influenced 
by other longitudinal key biomarkers, therefore they are difficult to be 
observed in the cross-sectional pattern. Galton et al. proposed that 
bilateral hippocampus atrophy with involvement of the amygdala 
bilaterally and the right parahippocampal gyrus [33], which confirms 
our explanation. The strong correlations between hippocampus with 
parahippocampal and amygdala can be also observed in the correlation 
matrix C. Second, some important biomarkers are only identified in the 
cross-sectional experiments, such as isthmus cingulate. McEvoy et al. 
pointed out that isthmus cingulate is effective in mild AD and MCI [79], 
and the imbalanced data in three-year longitudinal monitoring may 
result in missing isthmus cingulate in the longitudinal analysis. Finally, 
there are some important ROIs identified in both the cross-sectional and 
longitudinal experiments, such as the hippocampus, middle temporal, 
inferior lateral ventricle, and enternal. 

To sum up, the identified biomarkers such as the hippocampus [80, 
81], middle temporal [70,82], lateral ventricle [83,84], and corpus 
callosum [74,75] are highly suggestive and relevant to the cognitive 
impairment. 

7. Conclusion 

This paper has studied multi-task learning methods to predict 
cognitive outcomes and identify biomarkers in Alzheimer’s disease. In 
order to achieve a better disease prediction outcome, we develop a 
framework for multi-task learning simultaneously considering the task 
and feature correlation structures, and a novel FAS-norm penalty that 
can flexibly integrate the feature correlation information is proposed. To 
solve the proposed models, we develop an algorithm based on the 
ADMM. We conduct extensive experiments on both the synthetic data-
sets and the real-world datasets to verify the effectiveness of our models 
(FAS-MTFL, dMTLc, and dMTLl), which demonstrate their superior 
performances compared with the state-of-the-art and baselines. 
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Specifically, our methods achieve an average overall error decline of 
4.28% in the cross-sectional experiments and an average overall error 
decline of 7.97% in the ADAS longitudinal experiments compared with 
MTFL. According to the biomarker analysis, our methods could identify 
the different patterns between the cross-sectional and longitudinal 
analysis. Important ROIs such as the hippocampus, middle temporal, 
inferior lateral ventricle, and amygdala are highly suggestive and 
effective for AD prediction, where the amygdala is specific for the lon-
gitudinal analysis. For future work, we plan to investigate other types of 
correlation calculation (such as inverse covariance matrix). Moreover, 
we are interested in optimizing the feature correlation during multi-task 
learning rather than doing a prior calculation. 
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